Quantum Correction and the Moduli Spaces of Calabi-Yau Manifolds

We define the quantum correction of the Teichm\"uller space \(\mathcal{T}\) of Calabi-Yau manifolds. Under the assumption of no weak quantum correction, we prove that the Teichm\"uller space \(\mathcal{T}\) is a locally symmetric space with the Weil-Petersson metric. For Calabi-Yau threefo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2014-11
Hauptverfasser: Liu, Kefeng, Yin, Changyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Liu, Kefeng
Yin, Changyong
description We define the quantum correction of the Teichm\"uller space \(\mathcal{T}\) of Calabi-Yau manifolds. Under the assumption of no weak quantum correction, we prove that the Teichm\"uller space \(\mathcal{T}\) is a locally symmetric space with the Weil-Petersson metric. For Calabi-Yau threefolds, we show that no strong quantum correction is equivalent to that, with the Hodge metric, the image \( \Phi(\mathcal{T})\) of the Teichm\"uller space \(\mathcal{T}\) under the period map \(\Phi\) is an open submanifold of a globally Hermitian symmetric space \(W\) of the same dimension as \(\mathcal{T}\). Finally, for Hyperk\"ahler manifold of dimension \(2n \geq 4\), we find both locally and globally defined families of \((2,0)\) and \((2n,0)\)-classes over the Teichm\"uller space of polarized Hyperk\"ahler manifolds.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2084614623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084614623</sourcerecordid><originalsourceid>FETCH-proquest_journals_20846146233</originalsourceid><addsrcrecordid>eNqNjrsKwjAUQIMgWLT_cMG5kKZp7SgUxaWD6OJUrm2KKTG35vH_dvADnM5wznBWLBFFkWe1FGLDUu8nzrmoDqIsi4QdrxFtiG9oyDnVB00W0A4QXgpaGqLRcJuxVx5ohAYNPnX2wAgtWj2SGfyOrUc0XqU_btn-fLo3l2x29InKh26i6OyiOsFrWeWyWnb-q77tIzhX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084614623</pqid></control><display><type>article</type><title>Quantum Correction and the Moduli Spaces of Calabi-Yau Manifolds</title><source>Free E- Journals</source><creator>Liu, Kefeng ; Yin, Changyong</creator><creatorcontrib>Liu, Kefeng ; Yin, Changyong</creatorcontrib><description>We define the quantum correction of the Teichm\"uller space \(\mathcal{T}\) of Calabi-Yau manifolds. Under the assumption of no weak quantum correction, we prove that the Teichm\"uller space \(\mathcal{T}\) is a locally symmetric space with the Weil-Petersson metric. For Calabi-Yau threefolds, we show that no strong quantum correction is equivalent to that, with the Hodge metric, the image \( \Phi(\mathcal{T})\) of the Teichm\"uller space \(\mathcal{T}\) under the period map \(\Phi\) is an open submanifold of a globally Hermitian symmetric space \(W\) of the same dimension as \(\mathcal{T}\). Finally, for Hyperk\"ahler manifold of dimension \(2n \geq 4\), we find both locally and globally defined families of \((2,0)\) and \((2n,0)\)-classes over the Teichm\"uller space of polarized Hyperk\"ahler manifolds.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Manifolds (mathematics)</subject><ispartof>arXiv.org, 2014-11</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Liu, Kefeng</creatorcontrib><creatorcontrib>Yin, Changyong</creatorcontrib><title>Quantum Correction and the Moduli Spaces of Calabi-Yau Manifolds</title><title>arXiv.org</title><description>We define the quantum correction of the Teichm\"uller space \(\mathcal{T}\) of Calabi-Yau manifolds. Under the assumption of no weak quantum correction, we prove that the Teichm\"uller space \(\mathcal{T}\) is a locally symmetric space with the Weil-Petersson metric. For Calabi-Yau threefolds, we show that no strong quantum correction is equivalent to that, with the Hodge metric, the image \( \Phi(\mathcal{T})\) of the Teichm\"uller space \(\mathcal{T}\) under the period map \(\Phi\) is an open submanifold of a globally Hermitian symmetric space \(W\) of the same dimension as \(\mathcal{T}\). Finally, for Hyperk\"ahler manifold of dimension \(2n \geq 4\), we find both locally and globally defined families of \((2,0)\) and \((2n,0)\)-classes over the Teichm\"uller space of polarized Hyperk\"ahler manifolds.</description><subject>Manifolds (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjrsKwjAUQIMgWLT_cMG5kKZp7SgUxaWD6OJUrm2KKTG35vH_dvADnM5wznBWLBFFkWe1FGLDUu8nzrmoDqIsi4QdrxFtiG9oyDnVB00W0A4QXgpaGqLRcJuxVx5ohAYNPnX2wAgtWj2SGfyOrUc0XqU_btn-fLo3l2x29InKh26i6OyiOsFrWeWyWnb-q77tIzhX</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Liu, Kefeng</creator><creator>Yin, Changyong</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20141101</creationdate><title>Quantum Correction and the Moduli Spaces of Calabi-Yau Manifolds</title><author>Liu, Kefeng ; Yin, Changyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20846146233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Manifolds (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Kefeng</creatorcontrib><creatorcontrib>Yin, Changyong</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Kefeng</au><au>Yin, Changyong</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Quantum Correction and the Moduli Spaces of Calabi-Yau Manifolds</atitle><jtitle>arXiv.org</jtitle><date>2014-11-01</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>We define the quantum correction of the Teichm\"uller space \(\mathcal{T}\) of Calabi-Yau manifolds. Under the assumption of no weak quantum correction, we prove that the Teichm\"uller space \(\mathcal{T}\) is a locally symmetric space with the Weil-Petersson metric. For Calabi-Yau threefolds, we show that no strong quantum correction is equivalent to that, with the Hodge metric, the image \( \Phi(\mathcal{T})\) of the Teichm\"uller space \(\mathcal{T}\) under the period map \(\Phi\) is an open submanifold of a globally Hermitian symmetric space \(W\) of the same dimension as \(\mathcal{T}\). Finally, for Hyperk\"ahler manifold of dimension \(2n \geq 4\), we find both locally and globally defined families of \((2,0)\) and \((2n,0)\)-classes over the Teichm\"uller space of polarized Hyperk\"ahler manifolds.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2014-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2084614623
source Free E- Journals
subjects Manifolds (mathematics)
title Quantum Correction and the Moduli Spaces of Calabi-Yau Manifolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A00%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Quantum%20Correction%20and%20the%20Moduli%20Spaces%20of%20Calabi-Yau%20Manifolds&rft.jtitle=arXiv.org&rft.au=Liu,%20Kefeng&rft.date=2014-11-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2084614623%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084614623&rft_id=info:pmid/&rfr_iscdi=true