Convex Optimization in Julia
This paper describes Convex, a convex optimization modeling framework in Julia. Convex translates problems from a user-friendly functional language into an abstract syntax tree describing the problem. This concise representation of the global structure of the problem allows Convex to infer whether t...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2014-10 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Udell, Madeleine Mohan, Karanveer Zeng, David Hong, Jenny Diamond, Steven Boyd, Stephen |
description | This paper describes Convex, a convex optimization modeling framework in Julia. Convex translates problems from a user-friendly functional language into an abstract syntax tree describing the problem. This concise representation of the global structure of the problem allows Convex to infer whether the problem complies with the rules of disciplined convex programming (DCP), and to pass the problem to a suitable solver. These operations are carried out in Julia using multiple dispatch, which dramatically reduces the time required to verify DCP compliance and to parse a problem into conic form. Convex then automatically chooses an appropriate backend solver to solve the conic form problem. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2084543928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084543928</sourcerecordid><originalsourceid>FETCH-proquest_journals_20845439283</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQcc7PK0utUPAvKMnMzaxKLMnMz1PIzFPwKs3JTORhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjAwsTUxNjSyMLY-JUAQAs1yuh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084543928</pqid></control><display><type>article</type><title>Convex Optimization in Julia</title><source>Free E- Journals</source><creator>Udell, Madeleine ; Mohan, Karanveer ; Zeng, David ; Hong, Jenny ; Diamond, Steven ; Boyd, Stephen</creator><creatorcontrib>Udell, Madeleine ; Mohan, Karanveer ; Zeng, David ; Hong, Jenny ; Diamond, Steven ; Boyd, Stephen</creatorcontrib><description>This paper describes Convex, a convex optimization modeling framework in Julia. Convex translates problems from a user-friendly functional language into an abstract syntax tree describing the problem. This concise representation of the global structure of the problem allows Convex to infer whether the problem complies with the rules of disciplined convex programming (DCP), and to pass the problem to a suitable solver. These operations are carried out in Julia using multiple dispatch, which dramatically reduces the time required to verify DCP compliance and to parse a problem into conic form. Convex then automatically chooses an appropriate backend solver to solve the conic form problem.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Convex analysis ; Convexity ; Optimization ; Satellites</subject><ispartof>arXiv.org, 2014-10</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Udell, Madeleine</creatorcontrib><creatorcontrib>Mohan, Karanveer</creatorcontrib><creatorcontrib>Zeng, David</creatorcontrib><creatorcontrib>Hong, Jenny</creatorcontrib><creatorcontrib>Diamond, Steven</creatorcontrib><creatorcontrib>Boyd, Stephen</creatorcontrib><title>Convex Optimization in Julia</title><title>arXiv.org</title><description>This paper describes Convex, a convex optimization modeling framework in Julia. Convex translates problems from a user-friendly functional language into an abstract syntax tree describing the problem. This concise representation of the global structure of the problem allows Convex to infer whether the problem complies with the rules of disciplined convex programming (DCP), and to pass the problem to a suitable solver. These operations are carried out in Julia using multiple dispatch, which dramatically reduces the time required to verify DCP compliance and to parse a problem into conic form. Convex then automatically chooses an appropriate backend solver to solve the conic form problem.</description><subject>Convex analysis</subject><subject>Convexity</subject><subject>Optimization</subject><subject>Satellites</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQcc7PK0utUPAvKMnMzaxKLMnMz1PIzFPwKs3JTORhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjAwsTUxNjSyMLY-JUAQAs1yuh</recordid><startdate>20141017</startdate><enddate>20141017</enddate><creator>Udell, Madeleine</creator><creator>Mohan, Karanveer</creator><creator>Zeng, David</creator><creator>Hong, Jenny</creator><creator>Diamond, Steven</creator><creator>Boyd, Stephen</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20141017</creationdate><title>Convex Optimization in Julia</title><author>Udell, Madeleine ; Mohan, Karanveer ; Zeng, David ; Hong, Jenny ; Diamond, Steven ; Boyd, Stephen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20845439283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Convex analysis</topic><topic>Convexity</topic><topic>Optimization</topic><topic>Satellites</topic><toplevel>online_resources</toplevel><creatorcontrib>Udell, Madeleine</creatorcontrib><creatorcontrib>Mohan, Karanveer</creatorcontrib><creatorcontrib>Zeng, David</creatorcontrib><creatorcontrib>Hong, Jenny</creatorcontrib><creatorcontrib>Diamond, Steven</creatorcontrib><creatorcontrib>Boyd, Stephen</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Udell, Madeleine</au><au>Mohan, Karanveer</au><au>Zeng, David</au><au>Hong, Jenny</au><au>Diamond, Steven</au><au>Boyd, Stephen</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Convex Optimization in Julia</atitle><jtitle>arXiv.org</jtitle><date>2014-10-17</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>This paper describes Convex, a convex optimization modeling framework in Julia. Convex translates problems from a user-friendly functional language into an abstract syntax tree describing the problem. This concise representation of the global structure of the problem allows Convex to infer whether the problem complies with the rules of disciplined convex programming (DCP), and to pass the problem to a suitable solver. These operations are carried out in Julia using multiple dispatch, which dramatically reduces the time required to verify DCP compliance and to parse a problem into conic form. Convex then automatically chooses an appropriate backend solver to solve the conic form problem.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2014-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2084543928 |
source | Free E- Journals |
subjects | Convex analysis Convexity Optimization Satellites |
title | Convex Optimization in Julia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A22%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Convex%20Optimization%20in%20Julia&rft.jtitle=arXiv.org&rft.au=Udell,%20Madeleine&rft.date=2014-10-17&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2084543928%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084543928&rft_id=info:pmid/&rfr_iscdi=true |