Catalan States of Lattice Crossing

For a Lattice crossing \(L\left( m,n\right) \) we show which Catalan connection between \(2\left( m+n\right) \) points on boundary of \(m\times n\) rectangle \(P\) can be realized as a Kauffman state and we give an explicit formula for the number of such Catalan connections. For the case of a Catala...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2014-09
Hauptverfasser: Dabkowski, Mieczyslaw K, Li, Changsong, Przytycki, Jozef H
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Dabkowski, Mieczyslaw K
Li, Changsong
Przytycki, Jozef H
description For a Lattice crossing \(L\left( m,n\right) \) we show which Catalan connection between \(2\left( m+n\right) \) points on boundary of \(m\times n\) rectangle \(P\) can be realized as a Kauffman state and we give an explicit formula for the number of such Catalan connections. For the case of a Catalan connection with no arc starting and ending on the same side of the tangle, we find a closed formula for its coefficient in the Relative Kauffman Bracket Skein Module of \(P\times I\)
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2084497531</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084497531</sourcerecordid><originalsourceid>FETCH-proquest_journals_20844975313</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQck4sScxJzFMILkksSS1WyE9T8EksKclMTlVwLsovLs7MS-dhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjAwsTE0tzU2NDY-JUAQA5gS2I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084497531</pqid></control><display><type>article</type><title>Catalan States of Lattice Crossing</title><source>Freely Accessible Journals at publisher websites</source><creator>Dabkowski, Mieczyslaw K ; Li, Changsong ; Przytycki, Jozef H</creator><creatorcontrib>Dabkowski, Mieczyslaw K ; Li, Changsong ; Przytycki, Jozef H</creatorcontrib><description>For a Lattice crossing \(L\left( m,n\right) \) we show which Catalan connection between \(2\left( m+n\right) \) points on boundary of \(m\times n\) rectangle \(P\) can be realized as a Kauffman state and we give an explicit formula for the number of such Catalan connections. For the case of a Catalan connection with no arc starting and ending on the same side of the tangle, we find a closed formula for its coefficient in the Relative Kauffman Bracket Skein Module of \(P\times I\)</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><ispartof>arXiv.org, 2014-09</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Dabkowski, Mieczyslaw K</creatorcontrib><creatorcontrib>Li, Changsong</creatorcontrib><creatorcontrib>Przytycki, Jozef H</creatorcontrib><title>Catalan States of Lattice Crossing</title><title>arXiv.org</title><description>For a Lattice crossing \(L\left( m,n\right) \) we show which Catalan connection between \(2\left( m+n\right) \) points on boundary of \(m\times n\) rectangle \(P\) can be realized as a Kauffman state and we give an explicit formula for the number of such Catalan connections. For the case of a Catalan connection with no arc starting and ending on the same side of the tangle, we find a closed formula for its coefficient in the Relative Kauffman Bracket Skein Module of \(P\times I\)</description><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQck4sScxJzFMILkksSS1WyE9T8EksKclMTlVwLsovLs7MS-dhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjAwsTE0tzU2NDY-JUAQA5gS2I</recordid><startdate>20140914</startdate><enddate>20140914</enddate><creator>Dabkowski, Mieczyslaw K</creator><creator>Li, Changsong</creator><creator>Przytycki, Jozef H</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140914</creationdate><title>Catalan States of Lattice Crossing</title><author>Dabkowski, Mieczyslaw K ; Li, Changsong ; Przytycki, Jozef H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20844975313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Dabkowski, Mieczyslaw K</creatorcontrib><creatorcontrib>Li, Changsong</creatorcontrib><creatorcontrib>Przytycki, Jozef H</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dabkowski, Mieczyslaw K</au><au>Li, Changsong</au><au>Przytycki, Jozef H</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Catalan States of Lattice Crossing</atitle><jtitle>arXiv.org</jtitle><date>2014-09-14</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>For a Lattice crossing \(L\left( m,n\right) \) we show which Catalan connection between \(2\left( m+n\right) \) points on boundary of \(m\times n\) rectangle \(P\) can be realized as a Kauffman state and we give an explicit formula for the number of such Catalan connections. For the case of a Catalan connection with no arc starting and ending on the same side of the tangle, we find a closed formula for its coefficient in the Relative Kauffman Bracket Skein Module of \(P\times I\)</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2014-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2084497531
source Freely Accessible Journals at publisher websites
title Catalan States of Lattice Crossing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T18%3A14%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Catalan%20States%20of%20Lattice%20Crossing&rft.jtitle=arXiv.org&rft.au=Dabkowski,%20Mieczyslaw%20K&rft.date=2014-09-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2084497531%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084497531&rft_id=info:pmid/&rfr_iscdi=true