Improving Cross-domain Recommendation through Probabilistic Cluster-level Latent Factor Model--Extended Version

Cross-domain recommendation has been proposed to transfer user behavior pattern by pooling together the rating data from multiple domains to alleviate the sparsity problem appearing in single rating domains. However, previous models only assume that multiple domains share a latent common rating patt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2014-09
Hauptverfasser: Ren, Siting, Gao, Sheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ren, Siting
Gao, Sheng
description Cross-domain recommendation has been proposed to transfer user behavior pattern by pooling together the rating data from multiple domains to alleviate the sparsity problem appearing in single rating domains. However, previous models only assume that multiple domains share a latent common rating pattern based on the user-item co-clustering. To capture diversities among different domains, we propose a novel Probabilistic Cluster-level Latent Factor (PCLF) model to improve the cross-domain recommendation performance. Experiments on several real world datasets demonstrate that our proposed model outperforms the state-of-the-art methods for the cross-domain recommendation task.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2084493902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084493902</sourcerecordid><originalsourceid>FETCH-proquest_journals_20844939023</originalsourceid><addsrcrecordid>eNqNjsGKAjEQRIOwoLj-Q4PnQExGHc-DoqCwLItXiZPWiWTSms6In-8c_IA9FdQrHjUQI23MTJaF1kMxYb4ppfRiqedzMxK0a--Jnj5eoUrELB211kf4xZraFqOz2VOE3CTqrg38JDrbsw-es6-hCh1nTDLgEwPsbcaYYWPrTAkO5DBIuX71pUMHR0zcm77F18UGxsknx2K6Wf9VW9m_eHTI-XSjLsUenbQqi2JlVkqb_63eBSNLHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084493902</pqid></control><display><type>article</type><title>Improving Cross-domain Recommendation through Probabilistic Cluster-level Latent Factor Model--Extended Version</title><source>Free E- Journals</source><creator>Ren, Siting ; Gao, Sheng</creator><creatorcontrib>Ren, Siting ; Gao, Sheng</creatorcontrib><description>Cross-domain recommendation has been proposed to transfer user behavior pattern by pooling together the rating data from multiple domains to alleviate the sparsity problem appearing in single rating domains. However, previous models only assume that multiple domains share a latent common rating pattern based on the user-item co-clustering. To capture diversities among different domains, we propose a novel Probabilistic Cluster-level Latent Factor (PCLF) model to improve the cross-domain recommendation performance. Experiments on several real world datasets demonstrate that our proposed model outperforms the state-of-the-art methods for the cross-domain recommendation task.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Clustering ; Domains ; Recommender systems</subject><ispartof>arXiv.org, 2014-09</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Ren, Siting</creatorcontrib><creatorcontrib>Gao, Sheng</creatorcontrib><title>Improving Cross-domain Recommendation through Probabilistic Cluster-level Latent Factor Model--Extended Version</title><title>arXiv.org</title><description>Cross-domain recommendation has been proposed to transfer user behavior pattern by pooling together the rating data from multiple domains to alleviate the sparsity problem appearing in single rating domains. However, previous models only assume that multiple domains share a latent common rating pattern based on the user-item co-clustering. To capture diversities among different domains, we propose a novel Probabilistic Cluster-level Latent Factor (PCLF) model to improve the cross-domain recommendation performance. Experiments on several real world datasets demonstrate that our proposed model outperforms the state-of-the-art methods for the cross-domain recommendation task.</description><subject>Clustering</subject><subject>Domains</subject><subject>Recommender systems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjsGKAjEQRIOwoLj-Q4PnQExGHc-DoqCwLItXiZPWiWTSms6In-8c_IA9FdQrHjUQI23MTJaF1kMxYb4ppfRiqedzMxK0a--Jnj5eoUrELB211kf4xZraFqOz2VOE3CTqrg38JDrbsw-es6-hCh1nTDLgEwPsbcaYYWPrTAkO5DBIuX71pUMHR0zcm77F18UGxsknx2K6Wf9VW9m_eHTI-XSjLsUenbQqi2JlVkqb_63eBSNLHQ</recordid><startdate>20140924</startdate><enddate>20140924</enddate><creator>Ren, Siting</creator><creator>Gao, Sheng</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140924</creationdate><title>Improving Cross-domain Recommendation through Probabilistic Cluster-level Latent Factor Model--Extended Version</title><author>Ren, Siting ; Gao, Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20844939023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Clustering</topic><topic>Domains</topic><topic>Recommender systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Ren, Siting</creatorcontrib><creatorcontrib>Gao, Sheng</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Siting</au><au>Gao, Sheng</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Improving Cross-domain Recommendation through Probabilistic Cluster-level Latent Factor Model--Extended Version</atitle><jtitle>arXiv.org</jtitle><date>2014-09-24</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>Cross-domain recommendation has been proposed to transfer user behavior pattern by pooling together the rating data from multiple domains to alleviate the sparsity problem appearing in single rating domains. However, previous models only assume that multiple domains share a latent common rating pattern based on the user-item co-clustering. To capture diversities among different domains, we propose a novel Probabilistic Cluster-level Latent Factor (PCLF) model to improve the cross-domain recommendation performance. Experiments on several real world datasets demonstrate that our proposed model outperforms the state-of-the-art methods for the cross-domain recommendation task.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2014-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2084493902
source Free E- Journals
subjects Clustering
Domains
Recommender systems
title Improving Cross-domain Recommendation through Probabilistic Cluster-level Latent Factor Model--Extended Version
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A35%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Improving%20Cross-domain%20Recommendation%20through%20Probabilistic%20Cluster-level%20Latent%20Factor%20Model--Extended%20Version&rft.jtitle=arXiv.org&rft.au=Ren,%20Siting&rft.date=2014-09-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2084493902%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084493902&rft_id=info:pmid/&rfr_iscdi=true