Improving Cross-domain Recommendation through Probabilistic Cluster-level Latent Factor Model--Extended Version
Cross-domain recommendation has been proposed to transfer user behavior pattern by pooling together the rating data from multiple domains to alleviate the sparsity problem appearing in single rating domains. However, previous models only assume that multiple domains share a latent common rating patt...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2014-09 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ren, Siting Gao, Sheng |
description | Cross-domain recommendation has been proposed to transfer user behavior pattern by pooling together the rating data from multiple domains to alleviate the sparsity problem appearing in single rating domains. However, previous models only assume that multiple domains share a latent common rating pattern based on the user-item co-clustering. To capture diversities among different domains, we propose a novel Probabilistic Cluster-level Latent Factor (PCLF) model to improve the cross-domain recommendation performance. Experiments on several real world datasets demonstrate that our proposed model outperforms the state-of-the-art methods for the cross-domain recommendation task. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2084493902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084493902</sourcerecordid><originalsourceid>FETCH-proquest_journals_20844939023</originalsourceid><addsrcrecordid>eNqNjsGKAjEQRIOwoLj-Q4PnQExGHc-DoqCwLItXiZPWiWTSms6In-8c_IA9FdQrHjUQI23MTJaF1kMxYb4ppfRiqedzMxK0a--Jnj5eoUrELB211kf4xZraFqOz2VOE3CTqrg38JDrbsw-es6-hCh1nTDLgEwPsbcaYYWPrTAkO5DBIuX71pUMHR0zcm77F18UGxsknx2K6Wf9VW9m_eHTI-XSjLsUenbQqi2JlVkqb_63eBSNLHQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084493902</pqid></control><display><type>article</type><title>Improving Cross-domain Recommendation through Probabilistic Cluster-level Latent Factor Model--Extended Version</title><source>Free E- Journals</source><creator>Ren, Siting ; Gao, Sheng</creator><creatorcontrib>Ren, Siting ; Gao, Sheng</creatorcontrib><description>Cross-domain recommendation has been proposed to transfer user behavior pattern by pooling together the rating data from multiple domains to alleviate the sparsity problem appearing in single rating domains. However, previous models only assume that multiple domains share a latent common rating pattern based on the user-item co-clustering. To capture diversities among different domains, we propose a novel Probabilistic Cluster-level Latent Factor (PCLF) model to improve the cross-domain recommendation performance. Experiments on several real world datasets demonstrate that our proposed model outperforms the state-of-the-art methods for the cross-domain recommendation task.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Clustering ; Domains ; Recommender systems</subject><ispartof>arXiv.org, 2014-09</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Ren, Siting</creatorcontrib><creatorcontrib>Gao, Sheng</creatorcontrib><title>Improving Cross-domain Recommendation through Probabilistic Cluster-level Latent Factor Model--Extended Version</title><title>arXiv.org</title><description>Cross-domain recommendation has been proposed to transfer user behavior pattern by pooling together the rating data from multiple domains to alleviate the sparsity problem appearing in single rating domains. However, previous models only assume that multiple domains share a latent common rating pattern based on the user-item co-clustering. To capture diversities among different domains, we propose a novel Probabilistic Cluster-level Latent Factor (PCLF) model to improve the cross-domain recommendation performance. Experiments on several real world datasets demonstrate that our proposed model outperforms the state-of-the-art methods for the cross-domain recommendation task.</description><subject>Clustering</subject><subject>Domains</subject><subject>Recommender systems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjsGKAjEQRIOwoLj-Q4PnQExGHc-DoqCwLItXiZPWiWTSms6In-8c_IA9FdQrHjUQI23MTJaF1kMxYb4ppfRiqedzMxK0a--Jnj5eoUrELB211kf4xZraFqOz2VOE3CTqrg38JDrbsw-es6-hCh1nTDLgEwPsbcaYYWPrTAkO5DBIuX71pUMHR0zcm77F18UGxsknx2K6Wf9VW9m_eHTI-XSjLsUenbQqi2JlVkqb_63eBSNLHQ</recordid><startdate>20140924</startdate><enddate>20140924</enddate><creator>Ren, Siting</creator><creator>Gao, Sheng</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140924</creationdate><title>Improving Cross-domain Recommendation through Probabilistic Cluster-level Latent Factor Model--Extended Version</title><author>Ren, Siting ; Gao, Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20844939023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Clustering</topic><topic>Domains</topic><topic>Recommender systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Ren, Siting</creatorcontrib><creatorcontrib>Gao, Sheng</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Siting</au><au>Gao, Sheng</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Improving Cross-domain Recommendation through Probabilistic Cluster-level Latent Factor Model--Extended Version</atitle><jtitle>arXiv.org</jtitle><date>2014-09-24</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>Cross-domain recommendation has been proposed to transfer user behavior pattern by pooling together the rating data from multiple domains to alleviate the sparsity problem appearing in single rating domains. However, previous models only assume that multiple domains share a latent common rating pattern based on the user-item co-clustering. To capture diversities among different domains, we propose a novel Probabilistic Cluster-level Latent Factor (PCLF) model to improve the cross-domain recommendation performance. Experiments on several real world datasets demonstrate that our proposed model outperforms the state-of-the-art methods for the cross-domain recommendation task.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2014-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2084493902 |
source | Free E- Journals |
subjects | Clustering Domains Recommender systems |
title | Improving Cross-domain Recommendation through Probabilistic Cluster-level Latent Factor Model--Extended Version |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A35%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Improving%20Cross-domain%20Recommendation%20through%20Probabilistic%20Cluster-level%20Latent%20Factor%20Model--Extended%20Version&rft.jtitle=arXiv.org&rft.au=Ren,%20Siting&rft.date=2014-09-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2084493902%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084493902&rft_id=info:pmid/&rfr_iscdi=true |