Heavy Traffic Limits for GI/H/n Queues: Theory and Application

We consider a GI/H/n queueing system. In this system, there are multiple servers in the queue. The inter-arrival time is general and independent, and the service time follows hyper-exponential distribution. Instead of stochastic differential equations, we propose two heavy traffic limits for this sy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2014-09
Hauptverfasser: Zheng, Yousi, Shroff, Ness, Sinha, Prasun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zheng, Yousi
Shroff, Ness
Sinha, Prasun
description We consider a GI/H/n queueing system. In this system, there are multiple servers in the queue. The inter-arrival time is general and independent, and the service time follows hyper-exponential distribution. Instead of stochastic differential equations, we propose two heavy traffic limits for this system, which can be easily applied in practical systems. In applications, we show how to use these heavy traffic limits to design a power efficient cloud computing environment based on different QoS requirements.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2084493334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084493334</sourcerecordid><originalsourceid>FETCH-proquest_journals_20844933343</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw80hNLKtUCClKTEvLTFbwyczNLClWSMsvUnD31PfQz1MILE0tTS22UgjJSM0vqlRIzEtRcCwoyMlMTizJzM_jYWBNS8wpTuWF0twMym6uIc4eugVF-YVAfSXxWfmlRXlAqXgjAwsTE0tjY2MTY-JUAQAQKTcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084493334</pqid></control><display><type>article</type><title>Heavy Traffic Limits for GI/H/n Queues: Theory and Application</title><source>Freely Accessible Journals</source><creator>Zheng, Yousi ; Shroff, Ness ; Sinha, Prasun</creator><creatorcontrib>Zheng, Yousi ; Shroff, Ness ; Sinha, Prasun</creatorcontrib><description>We consider a GI/H/n queueing system. In this system, there are multiple servers in the queue. The inter-arrival time is general and independent, and the service time follows hyper-exponential distribution. Instead of stochastic differential equations, we propose two heavy traffic limits for this system, which can be easily applied in practical systems. In applications, we show how to use these heavy traffic limits to design a power efficient cloud computing environment based on different QoS requirements.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cloud computing ; Differential equations ; Probability distribution functions ; Queuing theory</subject><ispartof>arXiv.org, 2014-09</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Zheng, Yousi</creatorcontrib><creatorcontrib>Shroff, Ness</creatorcontrib><creatorcontrib>Sinha, Prasun</creatorcontrib><title>Heavy Traffic Limits for GI/H/n Queues: Theory and Application</title><title>arXiv.org</title><description>We consider a GI/H/n queueing system. In this system, there are multiple servers in the queue. The inter-arrival time is general and independent, and the service time follows hyper-exponential distribution. Instead of stochastic differential equations, we propose two heavy traffic limits for this system, which can be easily applied in practical systems. In applications, we show how to use these heavy traffic limits to design a power efficient cloud computing environment based on different QoS requirements.</description><subject>Cloud computing</subject><subject>Differential equations</subject><subject>Probability distribution functions</subject><subject>Queuing theory</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw80hNLKtUCClKTEvLTFbwyczNLClWSMsvUnD31PfQz1MILE0tTS22UgjJSM0vqlRIzEtRcCwoyMlMTizJzM_jYWBNS8wpTuWF0twMym6uIc4eugVF-YVAfSXxWfmlRXlAqXgjAwsTE0tjY2MTY-JUAQAQKTcA</recordid><startdate>20140911</startdate><enddate>20140911</enddate><creator>Zheng, Yousi</creator><creator>Shroff, Ness</creator><creator>Sinha, Prasun</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140911</creationdate><title>Heavy Traffic Limits for GI/H/n Queues: Theory and Application</title><author>Zheng, Yousi ; Shroff, Ness ; Sinha, Prasun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20844933343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Cloud computing</topic><topic>Differential equations</topic><topic>Probability distribution functions</topic><topic>Queuing theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Yousi</creatorcontrib><creatorcontrib>Shroff, Ness</creatorcontrib><creatorcontrib>Sinha, Prasun</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Yousi</au><au>Shroff, Ness</au><au>Sinha, Prasun</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Heavy Traffic Limits for GI/H/n Queues: Theory and Application</atitle><jtitle>arXiv.org</jtitle><date>2014-09-11</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>We consider a GI/H/n queueing system. In this system, there are multiple servers in the queue. The inter-arrival time is general and independent, and the service time follows hyper-exponential distribution. Instead of stochastic differential equations, we propose two heavy traffic limits for this system, which can be easily applied in practical systems. In applications, we show how to use these heavy traffic limits to design a power efficient cloud computing environment based on different QoS requirements.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2014-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2084493334
source Freely Accessible Journals
subjects Cloud computing
Differential equations
Probability distribution functions
Queuing theory
title Heavy Traffic Limits for GI/H/n Queues: Theory and Application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A11%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Heavy%20Traffic%20Limits%20for%20GI/H/n%20Queues:%20Theory%20and%20Application&rft.jtitle=arXiv.org&rft.au=Zheng,%20Yousi&rft.date=2014-09-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2084493334%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084493334&rft_id=info:pmid/&rfr_iscdi=true