Strongly J-clean matrices over 2-projective-free rings
An element \(a\) in a ring \(R\) is strongly J-clean if it is the sum of an idempotent and an element in the Jacobson radical that commutes. We characterize the strongly J-clean \(2\times 2\) matrices over 2-projective-free non-commutative rings.
Gespeichert in:
Veröffentlicht in: | arXiv.org 2014-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An element \(a\) in a ring \(R\) is strongly J-clean if it is the sum of an idempotent and an element in the Jacobson radical that commutes. We characterize the strongly J-clean \(2\times 2\) matrices over 2-projective-free non-commutative rings. |
---|---|
ISSN: | 2331-8422 |