Adaptive timestep control for nonstationary solutions of the Euler equations

In this paper we continue our work on adaptive timestep control for weakly non- stationary problems. The core of the method is a space-time splitting of adjoint error representations for target functionals due to S\"uli and Hartmann. The main new ingredients are (i) the extension from scalar, 1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2014-05
Hauptverfasser: Steiner, Christina, Müller, Siegfried, Sebastian, Noelle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Steiner, Christina
Müller, Siegfried
Sebastian, Noelle
description In this paper we continue our work on adaptive timestep control for weakly non- stationary problems. The core of the method is a space-time splitting of adjoint error representations for target functionals due to S\"uli and Hartmann. The main new ingredients are (i) the extension from scalar, 1D, conservation laws to the 2D Euler equations of gas dynamics, (ii) the derivation of boundary conditions for a new formulation of the adjoint problem and (iii) the coupling of the adaptive time-stepping with spatial adaptation. For the spatial adaptation, we use a multiresolution-based strategy developed by M\"uller, and we combine this with an implicit time discretization. The combined space-time adaptive method provides an efficient choice of timesteps for implicit computations of weakly nonstationary flows. The timestep will be very large in time intervalls of stationary flow, and becomes small when a perturbation enters the flow field. The efficiency of the solver is investigated by means of an unsteady inviscid 2D flow over a bump.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2084465835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084465835</sourcerecordid><originalsourceid>FETCH-proquest_journals_20844658353</originalsourceid><addsrcrecordid>eNqNjEEKwjAQRYMgWLR3GHBdiElTuxVRXLh0X4Km2BIzbWYieHureABX_8F7_JnIlNaboi6VWoicqJdSqmqrjNGZOO9uduDu6YC7hyN2A1wxcEQPLUYIGIgtdxhsfAGhTx8mwBb47uCQvIvgxvRNaCXmrfXk8t8uxfp4uOxPxRBxTNN702OKYVKNknVZVqbWRv9XvQHjkD6h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084465835</pqid></control><display><type>article</type><title>Adaptive timestep control for nonstationary solutions of the Euler equations</title><source>Free E- Journals</source><creator>Steiner, Christina ; Müller, Siegfried ; Sebastian, Noelle</creator><creatorcontrib>Steiner, Christina ; Müller, Siegfried ; Sebastian, Noelle</creatorcontrib><description>In this paper we continue our work on adaptive timestep control for weakly non- stationary problems. The core of the method is a space-time splitting of adjoint error representations for target functionals due to S\"uli and Hartmann. The main new ingredients are (i) the extension from scalar, 1D, conservation laws to the 2D Euler equations of gas dynamics, (ii) the derivation of boundary conditions for a new formulation of the adjoint problem and (iii) the coupling of the adaptive time-stepping with spatial adaptation. For the spatial adaptation, we use a multiresolution-based strategy developed by M\"uller, and we combine this with an implicit time discretization. The combined space-time adaptive method provides an efficient choice of timesteps for implicit computations of weakly nonstationary flows. The timestep will be very large in time intervalls of stationary flow, and becomes small when a perturbation enters the flow field. The efficiency of the solver is investigated by means of an unsteady inviscid 2D flow over a bump.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Adaptation ; Adaptive control ; Boundary conditions ; Conservation laws ; Euler-Lagrange equation ; Eulers equations ; Gas dynamics ; Spacetime ; Two dimensional flow</subject><ispartof>arXiv.org, 2014-05</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Steiner, Christina</creatorcontrib><creatorcontrib>Müller, Siegfried</creatorcontrib><creatorcontrib>Sebastian, Noelle</creatorcontrib><title>Adaptive timestep control for nonstationary solutions of the Euler equations</title><title>arXiv.org</title><description>In this paper we continue our work on adaptive timestep control for weakly non- stationary problems. The core of the method is a space-time splitting of adjoint error representations for target functionals due to S\"uli and Hartmann. The main new ingredients are (i) the extension from scalar, 1D, conservation laws to the 2D Euler equations of gas dynamics, (ii) the derivation of boundary conditions for a new formulation of the adjoint problem and (iii) the coupling of the adaptive time-stepping with spatial adaptation. For the spatial adaptation, we use a multiresolution-based strategy developed by M\"uller, and we combine this with an implicit time discretization. The combined space-time adaptive method provides an efficient choice of timesteps for implicit computations of weakly nonstationary flows. The timestep will be very large in time intervalls of stationary flow, and becomes small when a perturbation enters the flow field. The efficiency of the solver is investigated by means of an unsteady inviscid 2D flow over a bump.</description><subject>Adaptation</subject><subject>Adaptive control</subject><subject>Boundary conditions</subject><subject>Conservation laws</subject><subject>Euler-Lagrange equation</subject><subject>Eulers equations</subject><subject>Gas dynamics</subject><subject>Spacetime</subject><subject>Two dimensional flow</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjEEKwjAQRYMgWLR3GHBdiElTuxVRXLh0X4Km2BIzbWYieHureABX_8F7_JnIlNaboi6VWoicqJdSqmqrjNGZOO9uduDu6YC7hyN2A1wxcEQPLUYIGIgtdxhsfAGhTx8mwBb47uCQvIvgxvRNaCXmrfXk8t8uxfp4uOxPxRBxTNN702OKYVKNknVZVqbWRv9XvQHjkD6h</recordid><startdate>20140526</startdate><enddate>20140526</enddate><creator>Steiner, Christina</creator><creator>Müller, Siegfried</creator><creator>Sebastian, Noelle</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140526</creationdate><title>Adaptive timestep control for nonstationary solutions of the Euler equations</title><author>Steiner, Christina ; Müller, Siegfried ; Sebastian, Noelle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20844658353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptation</topic><topic>Adaptive control</topic><topic>Boundary conditions</topic><topic>Conservation laws</topic><topic>Euler-Lagrange equation</topic><topic>Eulers equations</topic><topic>Gas dynamics</topic><topic>Spacetime</topic><topic>Two dimensional flow</topic><toplevel>online_resources</toplevel><creatorcontrib>Steiner, Christina</creatorcontrib><creatorcontrib>Müller, Siegfried</creatorcontrib><creatorcontrib>Sebastian, Noelle</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steiner, Christina</au><au>Müller, Siegfried</au><au>Sebastian, Noelle</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Adaptive timestep control for nonstationary solutions of the Euler equations</atitle><jtitle>arXiv.org</jtitle><date>2014-05-26</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>In this paper we continue our work on adaptive timestep control for weakly non- stationary problems. The core of the method is a space-time splitting of adjoint error representations for target functionals due to S\"uli and Hartmann. The main new ingredients are (i) the extension from scalar, 1D, conservation laws to the 2D Euler equations of gas dynamics, (ii) the derivation of boundary conditions for a new formulation of the adjoint problem and (iii) the coupling of the adaptive time-stepping with spatial adaptation. For the spatial adaptation, we use a multiresolution-based strategy developed by M\"uller, and we combine this with an implicit time discretization. The combined space-time adaptive method provides an efficient choice of timesteps for implicit computations of weakly nonstationary flows. The timestep will be very large in time intervalls of stationary flow, and becomes small when a perturbation enters the flow field. The efficiency of the solver is investigated by means of an unsteady inviscid 2D flow over a bump.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2014-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2084465835
source Free E- Journals
subjects Adaptation
Adaptive control
Boundary conditions
Conservation laws
Euler-Lagrange equation
Eulers equations
Gas dynamics
Spacetime
Two dimensional flow
title Adaptive timestep control for nonstationary solutions of the Euler equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A35%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Adaptive%20timestep%20control%20for%20nonstationary%20solutions%20of%20the%20Euler%20equations&rft.jtitle=arXiv.org&rft.au=Steiner,%20Christina&rft.date=2014-05-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2084465835%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084465835&rft_id=info:pmid/&rfr_iscdi=true