On chordal graph and line graph squares

In this work we investigate the chordality of squares and line graph squares of graphs. We prove a sufficient condition for the chordality of squares of graphs not containing induced cycles of length at least five. Moreover, we characterize the chordality of graph squares by forbidden subgraphs. Tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2018-07, Vol.243, p.239-247
Hauptverfasser: Scheidweiler, Robert, Wiederrecht, Sebastian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 247
container_issue
container_start_page 239
container_title Discrete Applied Mathematics
container_volume 243
creator Scheidweiler, Robert
Wiederrecht, Sebastian
description In this work we investigate the chordality of squares and line graph squares of graphs. We prove a sufficient condition for the chordality of squares of graphs not containing induced cycles of length at least five. Moreover, we characterize the chordality of graph squares by forbidden subgraphs. Transferring that result to line graphs allows us to characterize the chordality of line graph squares.
doi_str_mv 10.1016/j.dam.2018.02.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2084460473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X18300726</els_id><sourcerecordid>2084460473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-7855d3c742e955e2db7c80f7bc79e0989cf9e1d218549f376280bd2f6026657e3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoWEcfwF3BhavWk7RNUlzJ4A0GZqPgLqTJqdPSaTtJK_j2ZuisXR1--C-Hj5BbCikFyh_a1Op9yoDKFFgKNDsjEZWCJVwIek6i4OEJo_Lrklx53wIADSoi99s-NrvBWd3F306Pu1j3Nu6aHk_SH2bt0F-Ti1p3Hm9Od0U-X54_1m_JZvv6vn7aJCZjMCVCFoXNjMgZlkWBzFbCSKhFZUSJUMrS1CVSG6aLvKwzwZmEyrKaA-O8EJityN3SO7rhMKOfVDvMrg-TioHMcw65yIKLLi7jBu8d1mp0zV67X0VBHXmoVgUe6shDAVOBR8g8LhkM7_806JQ3DfYGbePQTMoOzT_pP1fQZWo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084460473</pqid></control><display><type>article</type><title>On chordal graph and line graph squares</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Scheidweiler, Robert ; Wiederrecht, Sebastian</creator><creatorcontrib>Scheidweiler, Robert ; Wiederrecht, Sebastian</creatorcontrib><description>In this work we investigate the chordality of squares and line graph squares of graphs. We prove a sufficient condition for the chordality of squares of graphs not containing induced cycles of length at least five. Moreover, we characterize the chordality of graph squares by forbidden subgraphs. Transferring that result to line graphs allows us to characterize the chordality of line graph squares.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2018.02.013</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Chordal graph ; Combinatorics ; Graph square ; Graph theory ; Graphs ; Line graph ; Optimization</subject><ispartof>Discrete Applied Mathematics, 2018-07, Vol.243, p.239-247</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 10, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c320t-7855d3c742e955e2db7c80f7bc79e0989cf9e1d218549f376280bd2f6026657e3</cites><orcidid>0000-0003-0462-7815</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dam.2018.02.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Scheidweiler, Robert</creatorcontrib><creatorcontrib>Wiederrecht, Sebastian</creatorcontrib><title>On chordal graph and line graph squares</title><title>Discrete Applied Mathematics</title><description>In this work we investigate the chordality of squares and line graph squares of graphs. We prove a sufficient condition for the chordality of squares of graphs not containing induced cycles of length at least five. Moreover, we characterize the chordality of graph squares by forbidden subgraphs. Transferring that result to line graphs allows us to characterize the chordality of line graph squares.</description><subject>Chordal graph</subject><subject>Combinatorics</subject><subject>Graph square</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Line graph</subject><subject>Optimization</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoWEcfwF3BhavWk7RNUlzJ4A0GZqPgLqTJqdPSaTtJK_j2ZuisXR1--C-Hj5BbCikFyh_a1Op9yoDKFFgKNDsjEZWCJVwIek6i4OEJo_Lrklx53wIADSoi99s-NrvBWd3F306Pu1j3Nu6aHk_SH2bt0F-Ti1p3Hm9Od0U-X54_1m_JZvv6vn7aJCZjMCVCFoXNjMgZlkWBzFbCSKhFZUSJUMrS1CVSG6aLvKwzwZmEyrKaA-O8EJityN3SO7rhMKOfVDvMrg-TioHMcw65yIKLLi7jBu8d1mp0zV67X0VBHXmoVgUe6shDAVOBR8g8LhkM7_806JQ3DfYGbePQTMoOzT_pP1fQZWo</recordid><startdate>20180710</startdate><enddate>20180710</enddate><creator>Scheidweiler, Robert</creator><creator>Wiederrecht, Sebastian</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0462-7815</orcidid></search><sort><creationdate>20180710</creationdate><title>On chordal graph and line graph squares</title><author>Scheidweiler, Robert ; Wiederrecht, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-7855d3c742e955e2db7c80f7bc79e0989cf9e1d218549f376280bd2f6026657e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chordal graph</topic><topic>Combinatorics</topic><topic>Graph square</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Line graph</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scheidweiler, Robert</creatorcontrib><creatorcontrib>Wiederrecht, Sebastian</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scheidweiler, Robert</au><au>Wiederrecht, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On chordal graph and line graph squares</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2018-07-10</date><risdate>2018</risdate><volume>243</volume><spage>239</spage><epage>247</epage><pages>239-247</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>In this work we investigate the chordality of squares and line graph squares of graphs. We prove a sufficient condition for the chordality of squares of graphs not containing induced cycles of length at least five. Moreover, we characterize the chordality of graph squares by forbidden subgraphs. Transferring that result to line graphs allows us to characterize the chordality of line graph squares.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2018.02.013</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0462-7815</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2018-07, Vol.243, p.239-247
issn 0166-218X
1872-6771
language eng
recordid cdi_proquest_journals_2084460473
source ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals
subjects Chordal graph
Combinatorics
Graph square
Graph theory
Graphs
Line graph
Optimization
title On chordal graph and line graph squares
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A02%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20chordal%20graph%20and%20line%20graph%20squares&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Scheidweiler,%20Robert&rft.date=2018-07-10&rft.volume=243&rft.spage=239&rft.epage=247&rft.pages=239-247&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2018.02.013&rft_dat=%3Cproquest_cross%3E2084460473%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084460473&rft_id=info:pmid/&rft_els_id=S0166218X18300726&rfr_iscdi=true