On chordal graph and line graph squares
In this work we investigate the chordality of squares and line graph squares of graphs. We prove a sufficient condition for the chordality of squares of graphs not containing induced cycles of length at least five. Moreover, we characterize the chordality of graph squares by forbidden subgraphs. Tra...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2018-07, Vol.243, p.239-247 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 247 |
---|---|
container_issue | |
container_start_page | 239 |
container_title | Discrete Applied Mathematics |
container_volume | 243 |
creator | Scheidweiler, Robert Wiederrecht, Sebastian |
description | In this work we investigate the chordality of squares and line graph squares of graphs. We prove a sufficient condition for the chordality of squares of graphs not containing induced cycles of length at least five. Moreover, we characterize the chordality of graph squares by forbidden subgraphs. Transferring that result to line graphs allows us to characterize the chordality of line graph squares. |
doi_str_mv | 10.1016/j.dam.2018.02.013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2084460473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X18300726</els_id><sourcerecordid>2084460473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-7855d3c742e955e2db7c80f7bc79e0989cf9e1d218549f376280bd2f6026657e3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoWEcfwF3BhavWk7RNUlzJ4A0GZqPgLqTJqdPSaTtJK_j2ZuisXR1--C-Hj5BbCikFyh_a1Op9yoDKFFgKNDsjEZWCJVwIek6i4OEJo_Lrklx53wIADSoi99s-NrvBWd3F306Pu1j3Nu6aHk_SH2bt0F-Ti1p3Hm9Od0U-X54_1m_JZvv6vn7aJCZjMCVCFoXNjMgZlkWBzFbCSKhFZUSJUMrS1CVSG6aLvKwzwZmEyrKaA-O8EJityN3SO7rhMKOfVDvMrg-TioHMcw65yIKLLi7jBu8d1mp0zV67X0VBHXmoVgUe6shDAVOBR8g8LhkM7_806JQ3DfYGbePQTMoOzT_pP1fQZWo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084460473</pqid></control><display><type>article</type><title>On chordal graph and line graph squares</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Scheidweiler, Robert ; Wiederrecht, Sebastian</creator><creatorcontrib>Scheidweiler, Robert ; Wiederrecht, Sebastian</creatorcontrib><description>In this work we investigate the chordality of squares and line graph squares of graphs. We prove a sufficient condition for the chordality of squares of graphs not containing induced cycles of length at least five. Moreover, we characterize the chordality of graph squares by forbidden subgraphs. Transferring that result to line graphs allows us to characterize the chordality of line graph squares.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2018.02.013</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Chordal graph ; Combinatorics ; Graph square ; Graph theory ; Graphs ; Line graph ; Optimization</subject><ispartof>Discrete Applied Mathematics, 2018-07, Vol.243, p.239-247</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 10, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c320t-7855d3c742e955e2db7c80f7bc79e0989cf9e1d218549f376280bd2f6026657e3</cites><orcidid>0000-0003-0462-7815</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.dam.2018.02.013$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Scheidweiler, Robert</creatorcontrib><creatorcontrib>Wiederrecht, Sebastian</creatorcontrib><title>On chordal graph and line graph squares</title><title>Discrete Applied Mathematics</title><description>In this work we investigate the chordality of squares and line graph squares of graphs. We prove a sufficient condition for the chordality of squares of graphs not containing induced cycles of length at least five. Moreover, we characterize the chordality of graph squares by forbidden subgraphs. Transferring that result to line graphs allows us to characterize the chordality of line graph squares.</description><subject>Chordal graph</subject><subject>Combinatorics</subject><subject>Graph square</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Line graph</subject><subject>Optimization</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoWEcfwF3BhavWk7RNUlzJ4A0GZqPgLqTJqdPSaTtJK_j2ZuisXR1--C-Hj5BbCikFyh_a1Op9yoDKFFgKNDsjEZWCJVwIek6i4OEJo_Lrklx53wIADSoi99s-NrvBWd3F306Pu1j3Nu6aHk_SH2bt0F-Ti1p3Hm9Od0U-X54_1m_JZvv6vn7aJCZjMCVCFoXNjMgZlkWBzFbCSKhFZUSJUMrS1CVSG6aLvKwzwZmEyrKaA-O8EJityN3SO7rhMKOfVDvMrg-TioHMcw65yIKLLi7jBu8d1mp0zV67X0VBHXmoVgUe6shDAVOBR8g8LhkM7_806JQ3DfYGbePQTMoOzT_pP1fQZWo</recordid><startdate>20180710</startdate><enddate>20180710</enddate><creator>Scheidweiler, Robert</creator><creator>Wiederrecht, Sebastian</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0462-7815</orcidid></search><sort><creationdate>20180710</creationdate><title>On chordal graph and line graph squares</title><author>Scheidweiler, Robert ; Wiederrecht, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-7855d3c742e955e2db7c80f7bc79e0989cf9e1d218549f376280bd2f6026657e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chordal graph</topic><topic>Combinatorics</topic><topic>Graph square</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Line graph</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scheidweiler, Robert</creatorcontrib><creatorcontrib>Wiederrecht, Sebastian</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scheidweiler, Robert</au><au>Wiederrecht, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On chordal graph and line graph squares</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2018-07-10</date><risdate>2018</risdate><volume>243</volume><spage>239</spage><epage>247</epage><pages>239-247</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>In this work we investigate the chordality of squares and line graph squares of graphs. We prove a sufficient condition for the chordality of squares of graphs not containing induced cycles of length at least five. Moreover, we characterize the chordality of graph squares by forbidden subgraphs. Transferring that result to line graphs allows us to characterize the chordality of line graph squares.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2018.02.013</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0462-7815</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-218X |
ispartof | Discrete Applied Mathematics, 2018-07, Vol.243, p.239-247 |
issn | 0166-218X 1872-6771 |
language | eng |
recordid | cdi_proquest_journals_2084460473 |
source | ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals |
subjects | Chordal graph Combinatorics Graph square Graph theory Graphs Line graph Optimization |
title | On chordal graph and line graph squares |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T09%3A02%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20chordal%20graph%20and%20line%20graph%20squares&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Scheidweiler,%20Robert&rft.date=2018-07-10&rft.volume=243&rft.spage=239&rft.epage=247&rft.pages=239-247&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2018.02.013&rft_dat=%3Cproquest_cross%3E2084460473%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084460473&rft_id=info:pmid/&rft_els_id=S0166218X18300726&rfr_iscdi=true |