Correcting color and hyperspectral images with identification of distortion model

•A novel identification-based image correction method using a bi-illuminant dichromatic reflection model is proposed that works well both for color and hyperspectral images.•Image patches with uniform properties on distorted and distortions-free images are used as a prior knowledge for identificatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition letters 2016-11, Vol.83 (2), p.178-187
Hauptverfasser: Nikonorov, Artem, Bibikov, Sergey, Myasnikov, Vladislav, Yuzifovich, Yuriy, Fursov, Vladimir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 187
container_issue 2
container_start_page 178
container_title Pattern recognition letters
container_volume 83
creator Nikonorov, Artem
Bibikov, Sergey
Myasnikov, Vladislav
Yuzifovich, Yuriy
Fursov, Vladimir
description •A novel identification-based image correction method using a bi-illuminant dichromatic reflection model is proposed that works well both for color and hyperspectral images.•Image patches with uniform properties on distorted and distortions-free images are used as a prior knowledge for identification.•For matching pairs of distorted and distortions-free patches to exist, a necessary condition was proposed and theoretically proved.•Color correction function can be identified using a RANSAC-based optimization with the found necessary condition as an optimization constraint. This paper presents a novel identification-based image correction method using a bi-illuminant dichromatic reflection model. Image patches with uniform properties over distorted and distortion-free images or image parts are used as a prior knowledge for identification. We identify the distortion correction function on a set of these patches, called spectrum shape elements, with the Hausdorff metric. The main issue during prior knowledge representation is for each distorted spectrum shape element to find a corresponding distortion-free element. A necessary condition to find a matching spectrum shape element is presented and theoretically proved. Identification problem was solved using a RANSAC-based optimization with this necessary condition as an optimization constraint. The method works well both for color and hyperspectral images. The proposed image correction procedure was tested on a set of color images and AVIRIS hyperspectral remote sensing data and proved to provide the quality superior to the results obtained with Retinex correction.
doi_str_mv 10.1016/j.patrec.2016.06.027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2084460445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016786551630160X</els_id><sourcerecordid>2084460445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-e5bc2699c51406c32754e385ed203b84ad9446f53266adf3fddc757faa9724e53</originalsourceid><addsrcrecordid>eNp9UMtKxDAUDaLgOPoHLgquW9M8240ggy8YEEHXIZPHTEqnqUlGmb83ta6FA5f7OOdyDgDXNaxqWLPbrhplCkZVKHcVzED8BCzqhqOSY0JOwSIveNkwSs_BRYwdhJDhtlmAt5UPmZncsC2U730o5KCL3XE0IY55HmRfuL3cmlh8u7QrnDZDctYpmZwfCm8L7WLy4bfbe236S3BmZR_N1V9dgo_Hh_fVc7l-fXpZ3a9LhTFJpaEbhVjbKloTyBRGnBKDG2o0gnjTEKlbQpilGDEmtcVWa8Upt1K2HBFD8RLczLpj8J8HE5Po_CEM-aVAsMlcSMh0ReYrFXyMwVgxhuwnHEUNxRSe6MQcnpjCEzAD8Uy7m2kmO_hyJoionBmU0W5KS2jv_hf4AaM1et0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084460445</pqid></control><display><type>article</type><title>Correcting color and hyperspectral images with identification of distortion model</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Nikonorov, Artem ; Bibikov, Sergey ; Myasnikov, Vladislav ; Yuzifovich, Yuriy ; Fursov, Vladimir</creator><creatorcontrib>Nikonorov, Artem ; Bibikov, Sergey ; Myasnikov, Vladislav ; Yuzifovich, Yuriy ; Fursov, Vladimir</creatorcontrib><description>•A novel identification-based image correction method using a bi-illuminant dichromatic reflection model is proposed that works well both for color and hyperspectral images.•Image patches with uniform properties on distorted and distortions-free images are used as a prior knowledge for identification.•For matching pairs of distorted and distortions-free patches to exist, a necessary condition was proposed and theoretically proved.•Color correction function can be identified using a RANSAC-based optimization with the found necessary condition as an optimization constraint. This paper presents a novel identification-based image correction method using a bi-illuminant dichromatic reflection model. Image patches with uniform properties over distorted and distortion-free images or image parts are used as a prior knowledge for identification. We identify the distortion correction function on a set of these patches, called spectrum shape elements, with the Hausdorff metric. The main issue during prior knowledge representation is for each distorted spectrum shape element to find a corresponding distortion-free element. A necessary condition to find a matching spectrum shape element is presented and theoretically proved. Identification problem was solved using a RANSAC-based optimization with this necessary condition as an optimization constraint. The method works well both for color and hyperspectral images. The proposed image correction procedure was tested on a set of color images and AVIRIS hyperspectral remote sensing data and proved to provide the quality superior to the results obtained with Retinex correction.</description><identifier>ISSN: 0167-8655</identifier><identifier>EISSN: 1872-7344</identifier><identifier>DOI: 10.1016/j.patrec.2016.06.027</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>AVIRIS ; Bi-illuminant dichromatic model ; Color ; Color imagery ; Distortion ; Hausdorff distance ; Hyperspectral imaging ; Image correction ; Image processing ; Knowledge representation ; Optimization ; Patches (structures) ; Remote sensing ; Retinex (algorithm) ; Retinex model ; Spectrum analysis ; Topographic correction</subject><ispartof>Pattern recognition letters, 2016-11, Vol.83 (2), p.178-187</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Nov 1, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-e5bc2699c51406c32754e385ed203b84ad9446f53266adf3fddc757faa9724e53</citedby><cites>FETCH-LOGICAL-c334t-e5bc2699c51406c32754e385ed203b84ad9446f53266adf3fddc757faa9724e53</cites><orcidid>0000-0003-1282-4069</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S016786551630160X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Nikonorov, Artem</creatorcontrib><creatorcontrib>Bibikov, Sergey</creatorcontrib><creatorcontrib>Myasnikov, Vladislav</creatorcontrib><creatorcontrib>Yuzifovich, Yuriy</creatorcontrib><creatorcontrib>Fursov, Vladimir</creatorcontrib><title>Correcting color and hyperspectral images with identification of distortion model</title><title>Pattern recognition letters</title><description>•A novel identification-based image correction method using a bi-illuminant dichromatic reflection model is proposed that works well both for color and hyperspectral images.•Image patches with uniform properties on distorted and distortions-free images are used as a prior knowledge for identification.•For matching pairs of distorted and distortions-free patches to exist, a necessary condition was proposed and theoretically proved.•Color correction function can be identified using a RANSAC-based optimization with the found necessary condition as an optimization constraint. This paper presents a novel identification-based image correction method using a bi-illuminant dichromatic reflection model. Image patches with uniform properties over distorted and distortion-free images or image parts are used as a prior knowledge for identification. We identify the distortion correction function on a set of these patches, called spectrum shape elements, with the Hausdorff metric. The main issue during prior knowledge representation is for each distorted spectrum shape element to find a corresponding distortion-free element. A necessary condition to find a matching spectrum shape element is presented and theoretically proved. Identification problem was solved using a RANSAC-based optimization with this necessary condition as an optimization constraint. The method works well both for color and hyperspectral images. The proposed image correction procedure was tested on a set of color images and AVIRIS hyperspectral remote sensing data and proved to provide the quality superior to the results obtained with Retinex correction.</description><subject>AVIRIS</subject><subject>Bi-illuminant dichromatic model</subject><subject>Color</subject><subject>Color imagery</subject><subject>Distortion</subject><subject>Hausdorff distance</subject><subject>Hyperspectral imaging</subject><subject>Image correction</subject><subject>Image processing</subject><subject>Knowledge representation</subject><subject>Optimization</subject><subject>Patches (structures)</subject><subject>Remote sensing</subject><subject>Retinex (algorithm)</subject><subject>Retinex model</subject><subject>Spectrum analysis</subject><subject>Topographic correction</subject><issn>0167-8655</issn><issn>1872-7344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKxDAUDaLgOPoHLgquW9M8240ggy8YEEHXIZPHTEqnqUlGmb83ta6FA5f7OOdyDgDXNaxqWLPbrhplCkZVKHcVzED8BCzqhqOSY0JOwSIveNkwSs_BRYwdhJDhtlmAt5UPmZncsC2U730o5KCL3XE0IY55HmRfuL3cmlh8u7QrnDZDctYpmZwfCm8L7WLy4bfbe236S3BmZR_N1V9dgo_Hh_fVc7l-fXpZ3a9LhTFJpaEbhVjbKloTyBRGnBKDG2o0gnjTEKlbQpilGDEmtcVWa8Upt1K2HBFD8RLczLpj8J8HE5Po_CEM-aVAsMlcSMh0ReYrFXyMwVgxhuwnHEUNxRSe6MQcnpjCEzAD8Uy7m2kmO_hyJoionBmU0W5KS2jv_hf4AaM1et0</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Nikonorov, Artem</creator><creator>Bibikov, Sergey</creator><creator>Myasnikov, Vladislav</creator><creator>Yuzifovich, Yuriy</creator><creator>Fursov, Vladimir</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TK</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1282-4069</orcidid></search><sort><creationdate>20161101</creationdate><title>Correcting color and hyperspectral images with identification of distortion model</title><author>Nikonorov, Artem ; Bibikov, Sergey ; Myasnikov, Vladislav ; Yuzifovich, Yuriy ; Fursov, Vladimir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-e5bc2699c51406c32754e385ed203b84ad9446f53266adf3fddc757faa9724e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>AVIRIS</topic><topic>Bi-illuminant dichromatic model</topic><topic>Color</topic><topic>Color imagery</topic><topic>Distortion</topic><topic>Hausdorff distance</topic><topic>Hyperspectral imaging</topic><topic>Image correction</topic><topic>Image processing</topic><topic>Knowledge representation</topic><topic>Optimization</topic><topic>Patches (structures)</topic><topic>Remote sensing</topic><topic>Retinex (algorithm)</topic><topic>Retinex model</topic><topic>Spectrum analysis</topic><topic>Topographic correction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nikonorov, Artem</creatorcontrib><creatorcontrib>Bibikov, Sergey</creatorcontrib><creatorcontrib>Myasnikov, Vladislav</creatorcontrib><creatorcontrib>Yuzifovich, Yuriy</creatorcontrib><creatorcontrib>Fursov, Vladimir</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nikonorov, Artem</au><au>Bibikov, Sergey</au><au>Myasnikov, Vladislav</au><au>Yuzifovich, Yuriy</au><au>Fursov, Vladimir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correcting color and hyperspectral images with identification of distortion model</atitle><jtitle>Pattern recognition letters</jtitle><date>2016-11-01</date><risdate>2016</risdate><volume>83</volume><issue>2</issue><spage>178</spage><epage>187</epage><pages>178-187</pages><issn>0167-8655</issn><eissn>1872-7344</eissn><abstract>•A novel identification-based image correction method using a bi-illuminant dichromatic reflection model is proposed that works well both for color and hyperspectral images.•Image patches with uniform properties on distorted and distortions-free images are used as a prior knowledge for identification.•For matching pairs of distorted and distortions-free patches to exist, a necessary condition was proposed and theoretically proved.•Color correction function can be identified using a RANSAC-based optimization with the found necessary condition as an optimization constraint. This paper presents a novel identification-based image correction method using a bi-illuminant dichromatic reflection model. Image patches with uniform properties over distorted and distortion-free images or image parts are used as a prior knowledge for identification. We identify the distortion correction function on a set of these patches, called spectrum shape elements, with the Hausdorff metric. The main issue during prior knowledge representation is for each distorted spectrum shape element to find a corresponding distortion-free element. A necessary condition to find a matching spectrum shape element is presented and theoretically proved. Identification problem was solved using a RANSAC-based optimization with this necessary condition as an optimization constraint. The method works well both for color and hyperspectral images. The proposed image correction procedure was tested on a set of color images and AVIRIS hyperspectral remote sensing data and proved to provide the quality superior to the results obtained with Retinex correction.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.patrec.2016.06.027</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1282-4069</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0167-8655
ispartof Pattern recognition letters, 2016-11, Vol.83 (2), p.178-187
issn 0167-8655
1872-7344
language eng
recordid cdi_proquest_journals_2084460445
source Elsevier ScienceDirect Journals Complete
subjects AVIRIS
Bi-illuminant dichromatic model
Color
Color imagery
Distortion
Hausdorff distance
Hyperspectral imaging
Image correction
Image processing
Knowledge representation
Optimization
Patches (structures)
Remote sensing
Retinex (algorithm)
Retinex model
Spectrum analysis
Topographic correction
title Correcting color and hyperspectral images with identification of distortion model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A35%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correcting%20color%20and%20hyperspectral%20images%20with%20identification%20of%20distortion%20model&rft.jtitle=Pattern%20recognition%20letters&rft.au=Nikonorov,%20Artem&rft.date=2016-11-01&rft.volume=83&rft.issue=2&rft.spage=178&rft.epage=187&rft.pages=178-187&rft.issn=0167-8655&rft.eissn=1872-7344&rft_id=info:doi/10.1016/j.patrec.2016.06.027&rft_dat=%3Cproquest_cross%3E2084460445%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084460445&rft_id=info:pmid/&rft_els_id=S016786551630160X&rfr_iscdi=true