Correcting color and hyperspectral images with identification of distortion model
•A novel identification-based image correction method using a bi-illuminant dichromatic reflection model is proposed that works well both for color and hyperspectral images.•Image patches with uniform properties on distorted and distortions-free images are used as a prior knowledge for identificatio...
Gespeichert in:
Veröffentlicht in: | Pattern recognition letters 2016-11, Vol.83 (2), p.178-187 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 187 |
---|---|
container_issue | 2 |
container_start_page | 178 |
container_title | Pattern recognition letters |
container_volume | 83 |
creator | Nikonorov, Artem Bibikov, Sergey Myasnikov, Vladislav Yuzifovich, Yuriy Fursov, Vladimir |
description | •A novel identification-based image correction method using a bi-illuminant dichromatic reflection model is proposed that works well both for color and hyperspectral images.•Image patches with uniform properties on distorted and distortions-free images are used as a prior knowledge for identification.•For matching pairs of distorted and distortions-free patches to exist, a necessary condition was proposed and theoretically proved.•Color correction function can be identified using a RANSAC-based optimization with the found necessary condition as an optimization constraint.
This paper presents a novel identification-based image correction method using a bi-illuminant dichromatic reflection model. Image patches with uniform properties over distorted and distortion-free images or image parts are used as a prior knowledge for identification. We identify the distortion correction function on a set of these patches, called spectrum shape elements, with the Hausdorff metric. The main issue during prior knowledge representation is for each distorted spectrum shape element to find a corresponding distortion-free element. A necessary condition to find a matching spectrum shape element is presented and theoretically proved. Identification problem was solved using a RANSAC-based optimization with this necessary condition as an optimization constraint. The method works well both for color and hyperspectral images. The proposed image correction procedure was tested on a set of color images and AVIRIS hyperspectral remote sensing data and proved to provide the quality superior to the results obtained with Retinex correction. |
doi_str_mv | 10.1016/j.patrec.2016.06.027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2084460445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016786551630160X</els_id><sourcerecordid>2084460445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-e5bc2699c51406c32754e385ed203b84ad9446f53266adf3fddc757faa9724e53</originalsourceid><addsrcrecordid>eNp9UMtKxDAUDaLgOPoHLgquW9M8240ggy8YEEHXIZPHTEqnqUlGmb83ta6FA5f7OOdyDgDXNaxqWLPbrhplCkZVKHcVzED8BCzqhqOSY0JOwSIveNkwSs_BRYwdhJDhtlmAt5UPmZncsC2U730o5KCL3XE0IY55HmRfuL3cmlh8u7QrnDZDctYpmZwfCm8L7WLy4bfbe236S3BmZR_N1V9dgo_Hh_fVc7l-fXpZ3a9LhTFJpaEbhVjbKloTyBRGnBKDG2o0gnjTEKlbQpilGDEmtcVWa8Upt1K2HBFD8RLczLpj8J8HE5Po_CEM-aVAsMlcSMh0ReYrFXyMwVgxhuwnHEUNxRSe6MQcnpjCEzAD8Uy7m2kmO_hyJoionBmU0W5KS2jv_hf4AaM1et0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084460445</pqid></control><display><type>article</type><title>Correcting color and hyperspectral images with identification of distortion model</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Nikonorov, Artem ; Bibikov, Sergey ; Myasnikov, Vladislav ; Yuzifovich, Yuriy ; Fursov, Vladimir</creator><creatorcontrib>Nikonorov, Artem ; Bibikov, Sergey ; Myasnikov, Vladislav ; Yuzifovich, Yuriy ; Fursov, Vladimir</creatorcontrib><description>•A novel identification-based image correction method using a bi-illuminant dichromatic reflection model is proposed that works well both for color and hyperspectral images.•Image patches with uniform properties on distorted and distortions-free images are used as a prior knowledge for identification.•For matching pairs of distorted and distortions-free patches to exist, a necessary condition was proposed and theoretically proved.•Color correction function can be identified using a RANSAC-based optimization with the found necessary condition as an optimization constraint.
This paper presents a novel identification-based image correction method using a bi-illuminant dichromatic reflection model. Image patches with uniform properties over distorted and distortion-free images or image parts are used as a prior knowledge for identification. We identify the distortion correction function on a set of these patches, called spectrum shape elements, with the Hausdorff metric. The main issue during prior knowledge representation is for each distorted spectrum shape element to find a corresponding distortion-free element. A necessary condition to find a matching spectrum shape element is presented and theoretically proved. Identification problem was solved using a RANSAC-based optimization with this necessary condition as an optimization constraint. The method works well both for color and hyperspectral images. The proposed image correction procedure was tested on a set of color images and AVIRIS hyperspectral remote sensing data and proved to provide the quality superior to the results obtained with Retinex correction.</description><identifier>ISSN: 0167-8655</identifier><identifier>EISSN: 1872-7344</identifier><identifier>DOI: 10.1016/j.patrec.2016.06.027</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>AVIRIS ; Bi-illuminant dichromatic model ; Color ; Color imagery ; Distortion ; Hausdorff distance ; Hyperspectral imaging ; Image correction ; Image processing ; Knowledge representation ; Optimization ; Patches (structures) ; Remote sensing ; Retinex (algorithm) ; Retinex model ; Spectrum analysis ; Topographic correction</subject><ispartof>Pattern recognition letters, 2016-11, Vol.83 (2), p.178-187</ispartof><rights>2016 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Nov 1, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-e5bc2699c51406c32754e385ed203b84ad9446f53266adf3fddc757faa9724e53</citedby><cites>FETCH-LOGICAL-c334t-e5bc2699c51406c32754e385ed203b84ad9446f53266adf3fddc757faa9724e53</cites><orcidid>0000-0003-1282-4069</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S016786551630160X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Nikonorov, Artem</creatorcontrib><creatorcontrib>Bibikov, Sergey</creatorcontrib><creatorcontrib>Myasnikov, Vladislav</creatorcontrib><creatorcontrib>Yuzifovich, Yuriy</creatorcontrib><creatorcontrib>Fursov, Vladimir</creatorcontrib><title>Correcting color and hyperspectral images with identification of distortion model</title><title>Pattern recognition letters</title><description>•A novel identification-based image correction method using a bi-illuminant dichromatic reflection model is proposed that works well both for color and hyperspectral images.•Image patches with uniform properties on distorted and distortions-free images are used as a prior knowledge for identification.•For matching pairs of distorted and distortions-free patches to exist, a necessary condition was proposed and theoretically proved.•Color correction function can be identified using a RANSAC-based optimization with the found necessary condition as an optimization constraint.
This paper presents a novel identification-based image correction method using a bi-illuminant dichromatic reflection model. Image patches with uniform properties over distorted and distortion-free images or image parts are used as a prior knowledge for identification. We identify the distortion correction function on a set of these patches, called spectrum shape elements, with the Hausdorff metric. The main issue during prior knowledge representation is for each distorted spectrum shape element to find a corresponding distortion-free element. A necessary condition to find a matching spectrum shape element is presented and theoretically proved. Identification problem was solved using a RANSAC-based optimization with this necessary condition as an optimization constraint. The method works well both for color and hyperspectral images. The proposed image correction procedure was tested on a set of color images and AVIRIS hyperspectral remote sensing data and proved to provide the quality superior to the results obtained with Retinex correction.</description><subject>AVIRIS</subject><subject>Bi-illuminant dichromatic model</subject><subject>Color</subject><subject>Color imagery</subject><subject>Distortion</subject><subject>Hausdorff distance</subject><subject>Hyperspectral imaging</subject><subject>Image correction</subject><subject>Image processing</subject><subject>Knowledge representation</subject><subject>Optimization</subject><subject>Patches (structures)</subject><subject>Remote sensing</subject><subject>Retinex (algorithm)</subject><subject>Retinex model</subject><subject>Spectrum analysis</subject><subject>Topographic correction</subject><issn>0167-8655</issn><issn>1872-7344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKxDAUDaLgOPoHLgquW9M8240ggy8YEEHXIZPHTEqnqUlGmb83ta6FA5f7OOdyDgDXNaxqWLPbrhplCkZVKHcVzED8BCzqhqOSY0JOwSIveNkwSs_BRYwdhJDhtlmAt5UPmZncsC2U730o5KCL3XE0IY55HmRfuL3cmlh8u7QrnDZDctYpmZwfCm8L7WLy4bfbe236S3BmZR_N1V9dgo_Hh_fVc7l-fXpZ3a9LhTFJpaEbhVjbKloTyBRGnBKDG2o0gnjTEKlbQpilGDEmtcVWa8Upt1K2HBFD8RLczLpj8J8HE5Po_CEM-aVAsMlcSMh0ReYrFXyMwVgxhuwnHEUNxRSe6MQcnpjCEzAD8Uy7m2kmO_hyJoionBmU0W5KS2jv_hf4AaM1et0</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Nikonorov, Artem</creator><creator>Bibikov, Sergey</creator><creator>Myasnikov, Vladislav</creator><creator>Yuzifovich, Yuriy</creator><creator>Fursov, Vladimir</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TK</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1282-4069</orcidid></search><sort><creationdate>20161101</creationdate><title>Correcting color and hyperspectral images with identification of distortion model</title><author>Nikonorov, Artem ; Bibikov, Sergey ; Myasnikov, Vladislav ; Yuzifovich, Yuriy ; Fursov, Vladimir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-e5bc2699c51406c32754e385ed203b84ad9446f53266adf3fddc757faa9724e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>AVIRIS</topic><topic>Bi-illuminant dichromatic model</topic><topic>Color</topic><topic>Color imagery</topic><topic>Distortion</topic><topic>Hausdorff distance</topic><topic>Hyperspectral imaging</topic><topic>Image correction</topic><topic>Image processing</topic><topic>Knowledge representation</topic><topic>Optimization</topic><topic>Patches (structures)</topic><topic>Remote sensing</topic><topic>Retinex (algorithm)</topic><topic>Retinex model</topic><topic>Spectrum analysis</topic><topic>Topographic correction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nikonorov, Artem</creatorcontrib><creatorcontrib>Bibikov, Sergey</creatorcontrib><creatorcontrib>Myasnikov, Vladislav</creatorcontrib><creatorcontrib>Yuzifovich, Yuriy</creatorcontrib><creatorcontrib>Fursov, Vladimir</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nikonorov, Artem</au><au>Bibikov, Sergey</au><au>Myasnikov, Vladislav</au><au>Yuzifovich, Yuriy</au><au>Fursov, Vladimir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correcting color and hyperspectral images with identification of distortion model</atitle><jtitle>Pattern recognition letters</jtitle><date>2016-11-01</date><risdate>2016</risdate><volume>83</volume><issue>2</issue><spage>178</spage><epage>187</epage><pages>178-187</pages><issn>0167-8655</issn><eissn>1872-7344</eissn><abstract>•A novel identification-based image correction method using a bi-illuminant dichromatic reflection model is proposed that works well both for color and hyperspectral images.•Image patches with uniform properties on distorted and distortions-free images are used as a prior knowledge for identification.•For matching pairs of distorted and distortions-free patches to exist, a necessary condition was proposed and theoretically proved.•Color correction function can be identified using a RANSAC-based optimization with the found necessary condition as an optimization constraint.
This paper presents a novel identification-based image correction method using a bi-illuminant dichromatic reflection model. Image patches with uniform properties over distorted and distortion-free images or image parts are used as a prior knowledge for identification. We identify the distortion correction function on a set of these patches, called spectrum shape elements, with the Hausdorff metric. The main issue during prior knowledge representation is for each distorted spectrum shape element to find a corresponding distortion-free element. A necessary condition to find a matching spectrum shape element is presented and theoretically proved. Identification problem was solved using a RANSAC-based optimization with this necessary condition as an optimization constraint. The method works well both for color and hyperspectral images. The proposed image correction procedure was tested on a set of color images and AVIRIS hyperspectral remote sensing data and proved to provide the quality superior to the results obtained with Retinex correction.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.patrec.2016.06.027</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1282-4069</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8655 |
ispartof | Pattern recognition letters, 2016-11, Vol.83 (2), p.178-187 |
issn | 0167-8655 1872-7344 |
language | eng |
recordid | cdi_proquest_journals_2084460445 |
source | Elsevier ScienceDirect Journals Complete |
subjects | AVIRIS Bi-illuminant dichromatic model Color Color imagery Distortion Hausdorff distance Hyperspectral imaging Image correction Image processing Knowledge representation Optimization Patches (structures) Remote sensing Retinex (algorithm) Retinex model Spectrum analysis Topographic correction |
title | Correcting color and hyperspectral images with identification of distortion model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A35%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correcting%20color%20and%20hyperspectral%20images%20with%20identification%20of%20distortion%20model&rft.jtitle=Pattern%20recognition%20letters&rft.au=Nikonorov,%20Artem&rft.date=2016-11-01&rft.volume=83&rft.issue=2&rft.spage=178&rft.epage=187&rft.pages=178-187&rft.issn=0167-8655&rft.eissn=1872-7344&rft_id=info:doi/10.1016/j.patrec.2016.06.027&rft_dat=%3Cproquest_cross%3E2084460445%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084460445&rft_id=info:pmid/&rft_els_id=S016786551630160X&rfr_iscdi=true |