Algorithms for Communication Scheduling in Data Gathering Network with Data Compression
We consider a communication scheduling problem that arises within wireless sensor networks, where data is accumulated by the sensors and transferred directly to a central base station. One may choose to compress the data collected by a sensor, to decrease the data size for transmission, but the cost...
Gespeichert in:
Veröffentlicht in: | Algorithmica 2018-11, Vol.80 (11), p.3158-3176 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3176 |
---|---|
container_issue | 11 |
container_start_page | 3158 |
container_title | Algorithmica |
container_volume | 80 |
creator | Luo, Wenchang Xu, Yao Gu, Boyuan Tong, Weitian Goebel, Randy Lin, Guohui |
description | We consider a communication scheduling problem that arises within wireless sensor networks, where data is accumulated by the sensors and transferred directly to a central base station. One may choose to compress the data collected by a sensor, to decrease the data size for transmission, but the cost of compression must be considered. The goal is to designate a subset of sensors to compress their collected data, and then to determine a data transmission order for all the sensors, such that the total compression cost is minimized subject to a bounded data transmission completion time (a.k.a. makespan). A recent result confirms the NP-hardness for this problem, even in the special case where data compression is free. Here we first design a pseudo-polynomial time exact algorithm, articulated within a dynamic programming scheme. This algorithm also solves a variant with the complementary optimization goal—to minimize the makespan while constraining the total compression cost within a given budget. Our second result consists of a bi-factor
(
1
+
ϵ
,
2
)
-approximation for the problem, where
(
1
+
ϵ
)
refers to the compression cost and 2 refers to the makespan, and a 2-approximation for the variant. Lastly, we apply a sparsing technique to the dynamic programming exact algorithm, to achieve a dual fully polynomial time approximation scheme for the problem and a usual fully polynomial time approximation scheme for the variant. |
doi_str_mv | 10.1007/s00453-017-0373-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2084396646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084396646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-9483ffdcf9c5fbf4c86405ecb1f3cb9edb5c38c7b7963206586416b3ab66fdaf3</originalsourceid><addsrcrecordid>eNp1kE9PwyAYxonRxDn9AN5IPKNQKG2Py9RpsuhBjUcCFLbOtVSgWfbtpamJJ09v8j7P7_3zAHBN8C3BuLgLGLOcIkwKhGlBET8BM8JohnDOyCmYJaFEjJPiHFyEsMOYZEXFZ-Bzsd8438RtG6B1Hi5d2w5do2VsXAff9NbUw77pNrDp4L2MEq5k3Bo_dl5MPDj_BQ-JnrQE996EkNBLcGblPpir3zoHH48P78sntH5dPS8Xa6Qp4RFVrKTW1tpWOrfKMl1yhnOjFbFUq8rUKte01IVKx9IM8zzphCsqFee2lpbOwc00t_fuezAhip0bfJdWigyXjFacM55cZHJp70LwxoreN630R0GwGPMTU34ixSTG_MTIZBMT-vFd4_8m_w_9AFqGc_M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084396646</pqid></control><display><type>article</type><title>Algorithms for Communication Scheduling in Data Gathering Network with Data Compression</title><source>SpringerLink Journals - AutoHoldings</source><creator>Luo, Wenchang ; Xu, Yao ; Gu, Boyuan ; Tong, Weitian ; Goebel, Randy ; Lin, Guohui</creator><creatorcontrib>Luo, Wenchang ; Xu, Yao ; Gu, Boyuan ; Tong, Weitian ; Goebel, Randy ; Lin, Guohui</creatorcontrib><description>We consider a communication scheduling problem that arises within wireless sensor networks, where data is accumulated by the sensors and transferred directly to a central base station. One may choose to compress the data collected by a sensor, to decrease the data size for transmission, but the cost of compression must be considered. The goal is to designate a subset of sensors to compress their collected data, and then to determine a data transmission order for all the sensors, such that the total compression cost is minimized subject to a bounded data transmission completion time (a.k.a. makespan). A recent result confirms the NP-hardness for this problem, even in the special case where data compression is free. Here we first design a pseudo-polynomial time exact algorithm, articulated within a dynamic programming scheme. This algorithm also solves a variant with the complementary optimization goal—to minimize the makespan while constraining the total compression cost within a given budget. Our second result consists of a bi-factor
(
1
+
ϵ
,
2
)
-approximation for the problem, where
(
1
+
ϵ
)
refers to the compression cost and 2 refers to the makespan, and a 2-approximation for the variant. Lastly, we apply a sparsing technique to the dynamic programming exact algorithm, to achieve a dual fully polynomial time approximation scheme for the problem and a usual fully polynomial time approximation scheme for the variant.</description><identifier>ISSN: 0178-4617</identifier><identifier>EISSN: 1432-0541</identifier><identifier>DOI: 10.1007/s00453-017-0373-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithm Analysis and Problem Complexity ; Algorithms ; Approximation ; Completion time ; Computer Science ; Computer Systems Organization and Communication Networks ; Data compression ; Data Structures and Information Theory ; Data transmission ; Dynamic programming ; Mathematical analysis ; Mathematics of Computing ; Polynomials ; Production scheduling ; Remote sensors ; Scheduling ; Sensors ; Set theory ; Theory of Computation ; Wireless communications ; Wireless sensor networks</subject><ispartof>Algorithmica, 2018-11, Vol.80 (11), p.3158-3176</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-9483ffdcf9c5fbf4c86405ecb1f3cb9edb5c38c7b7963206586416b3ab66fdaf3</citedby><cites>FETCH-LOGICAL-c316t-9483ffdcf9c5fbf4c86405ecb1f3cb9edb5c38c7b7963206586416b3ab66fdaf3</cites><orcidid>0000-0003-4283-3396</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00453-017-0373-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00453-017-0373-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Luo, Wenchang</creatorcontrib><creatorcontrib>Xu, Yao</creatorcontrib><creatorcontrib>Gu, Boyuan</creatorcontrib><creatorcontrib>Tong, Weitian</creatorcontrib><creatorcontrib>Goebel, Randy</creatorcontrib><creatorcontrib>Lin, Guohui</creatorcontrib><title>Algorithms for Communication Scheduling in Data Gathering Network with Data Compression</title><title>Algorithmica</title><addtitle>Algorithmica</addtitle><description>We consider a communication scheduling problem that arises within wireless sensor networks, where data is accumulated by the sensors and transferred directly to a central base station. One may choose to compress the data collected by a sensor, to decrease the data size for transmission, but the cost of compression must be considered. The goal is to designate a subset of sensors to compress their collected data, and then to determine a data transmission order for all the sensors, such that the total compression cost is minimized subject to a bounded data transmission completion time (a.k.a. makespan). A recent result confirms the NP-hardness for this problem, even in the special case where data compression is free. Here we first design a pseudo-polynomial time exact algorithm, articulated within a dynamic programming scheme. This algorithm also solves a variant with the complementary optimization goal—to minimize the makespan while constraining the total compression cost within a given budget. Our second result consists of a bi-factor
(
1
+
ϵ
,
2
)
-approximation for the problem, where
(
1
+
ϵ
)
refers to the compression cost and 2 refers to the makespan, and a 2-approximation for the variant. Lastly, we apply a sparsing technique to the dynamic programming exact algorithm, to achieve a dual fully polynomial time approximation scheme for the problem and a usual fully polynomial time approximation scheme for the variant.</description><subject>Algorithm Analysis and Problem Complexity</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Completion time</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Data compression</subject><subject>Data Structures and Information Theory</subject><subject>Data transmission</subject><subject>Dynamic programming</subject><subject>Mathematical analysis</subject><subject>Mathematics of Computing</subject><subject>Polynomials</subject><subject>Production scheduling</subject><subject>Remote sensors</subject><subject>Scheduling</subject><subject>Sensors</subject><subject>Set theory</subject><subject>Theory of Computation</subject><subject>Wireless communications</subject><subject>Wireless sensor networks</subject><issn>0178-4617</issn><issn>1432-0541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE9PwyAYxonRxDn9AN5IPKNQKG2Py9RpsuhBjUcCFLbOtVSgWfbtpamJJ09v8j7P7_3zAHBN8C3BuLgLGLOcIkwKhGlBET8BM8JohnDOyCmYJaFEjJPiHFyEsMOYZEXFZ-Bzsd8438RtG6B1Hi5d2w5do2VsXAff9NbUw77pNrDp4L2MEq5k3Bo_dl5MPDj_BQ-JnrQE996EkNBLcGblPpir3zoHH48P78sntH5dPS8Xa6Qp4RFVrKTW1tpWOrfKMl1yhnOjFbFUq8rUKte01IVKx9IM8zzphCsqFee2lpbOwc00t_fuezAhip0bfJdWigyXjFacM55cZHJp70LwxoreN630R0GwGPMTU34ixSTG_MTIZBMT-vFd4_8m_w_9AFqGc_M</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Luo, Wenchang</creator><creator>Xu, Yao</creator><creator>Gu, Boyuan</creator><creator>Tong, Weitian</creator><creator>Goebel, Randy</creator><creator>Lin, Guohui</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4283-3396</orcidid></search><sort><creationdate>20181101</creationdate><title>Algorithms for Communication Scheduling in Data Gathering Network with Data Compression</title><author>Luo, Wenchang ; Xu, Yao ; Gu, Boyuan ; Tong, Weitian ; Goebel, Randy ; Lin, Guohui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-9483ffdcf9c5fbf4c86405ecb1f3cb9edb5c38c7b7963206586416b3ab66fdaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithm Analysis and Problem Complexity</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Completion time</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Data compression</topic><topic>Data Structures and Information Theory</topic><topic>Data transmission</topic><topic>Dynamic programming</topic><topic>Mathematical analysis</topic><topic>Mathematics of Computing</topic><topic>Polynomials</topic><topic>Production scheduling</topic><topic>Remote sensors</topic><topic>Scheduling</topic><topic>Sensors</topic><topic>Set theory</topic><topic>Theory of Computation</topic><topic>Wireless communications</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Wenchang</creatorcontrib><creatorcontrib>Xu, Yao</creatorcontrib><creatorcontrib>Gu, Boyuan</creatorcontrib><creatorcontrib>Tong, Weitian</creatorcontrib><creatorcontrib>Goebel, Randy</creatorcontrib><creatorcontrib>Lin, Guohui</creatorcontrib><collection>CrossRef</collection><jtitle>Algorithmica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Wenchang</au><au>Xu, Yao</au><au>Gu, Boyuan</au><au>Tong, Weitian</au><au>Goebel, Randy</au><au>Lin, Guohui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algorithms for Communication Scheduling in Data Gathering Network with Data Compression</atitle><jtitle>Algorithmica</jtitle><stitle>Algorithmica</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>80</volume><issue>11</issue><spage>3158</spage><epage>3176</epage><pages>3158-3176</pages><issn>0178-4617</issn><eissn>1432-0541</eissn><abstract>We consider a communication scheduling problem that arises within wireless sensor networks, where data is accumulated by the sensors and transferred directly to a central base station. One may choose to compress the data collected by a sensor, to decrease the data size for transmission, but the cost of compression must be considered. The goal is to designate a subset of sensors to compress their collected data, and then to determine a data transmission order for all the sensors, such that the total compression cost is minimized subject to a bounded data transmission completion time (a.k.a. makespan). A recent result confirms the NP-hardness for this problem, even in the special case where data compression is free. Here we first design a pseudo-polynomial time exact algorithm, articulated within a dynamic programming scheme. This algorithm also solves a variant with the complementary optimization goal—to minimize the makespan while constraining the total compression cost within a given budget. Our second result consists of a bi-factor
(
1
+
ϵ
,
2
)
-approximation for the problem, where
(
1
+
ϵ
)
refers to the compression cost and 2 refers to the makespan, and a 2-approximation for the variant. Lastly, we apply a sparsing technique to the dynamic programming exact algorithm, to achieve a dual fully polynomial time approximation scheme for the problem and a usual fully polynomial time approximation scheme for the variant.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00453-017-0373-6</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-4283-3396</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-4617 |
ispartof | Algorithmica, 2018-11, Vol.80 (11), p.3158-3176 |
issn | 0178-4617 1432-0541 |
language | eng |
recordid | cdi_proquest_journals_2084396646 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithm Analysis and Problem Complexity Algorithms Approximation Completion time Computer Science Computer Systems Organization and Communication Networks Data compression Data Structures and Information Theory Data transmission Dynamic programming Mathematical analysis Mathematics of Computing Polynomials Production scheduling Remote sensors Scheduling Sensors Set theory Theory of Computation Wireless communications Wireless sensor networks |
title | Algorithms for Communication Scheduling in Data Gathering Network with Data Compression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A41%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algorithms%20for%20Communication%20Scheduling%20in%20Data%20Gathering%20Network%20with%20Data%20Compression&rft.jtitle=Algorithmica&rft.au=Luo,%20Wenchang&rft.date=2018-11-01&rft.volume=80&rft.issue=11&rft.spage=3158&rft.epage=3176&rft.pages=3158-3176&rft.issn=0178-4617&rft.eissn=1432-0541&rft_id=info:doi/10.1007/s00453-017-0373-6&rft_dat=%3Cproquest_cross%3E2084396646%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084396646&rft_id=info:pmid/&rfr_iscdi=true |