Algorithms for Communication Scheduling in Data Gathering Network with Data Compression

We consider a communication scheduling problem that arises within wireless sensor networks, where data is accumulated by the sensors and transferred directly to a central base station. One may choose to compress the data collected by a sensor, to decrease the data size for transmission, but the cost...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algorithmica 2018-11, Vol.80 (11), p.3158-3176
Hauptverfasser: Luo, Wenchang, Xu, Yao, Gu, Boyuan, Tong, Weitian, Goebel, Randy, Lin, Guohui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3176
container_issue 11
container_start_page 3158
container_title Algorithmica
container_volume 80
creator Luo, Wenchang
Xu, Yao
Gu, Boyuan
Tong, Weitian
Goebel, Randy
Lin, Guohui
description We consider a communication scheduling problem that arises within wireless sensor networks, where data is accumulated by the sensors and transferred directly to a central base station. One may choose to compress the data collected by a sensor, to decrease the data size for transmission, but the cost of compression must be considered. The goal is to designate a subset of sensors to compress their collected data, and then to determine a data transmission order for all the sensors, such that the total compression cost is minimized subject to a bounded data transmission completion time (a.k.a. makespan). A recent result confirms the NP-hardness for this problem, even in the special case where data compression is free. Here we first design a pseudo-polynomial time exact algorithm, articulated within a dynamic programming scheme. This algorithm also solves a variant with the complementary optimization goal—to minimize the makespan while constraining the total compression cost within a given budget. Our second result consists of a bi-factor ( 1 + ϵ , 2 ) -approximation for the problem, where ( 1 + ϵ ) refers to the compression cost and 2 refers to the makespan, and a 2-approximation for the variant. Lastly, we apply a sparsing technique to the dynamic programming exact algorithm, to achieve a dual fully polynomial time approximation scheme for the problem and a usual fully polynomial time approximation scheme for the variant.
doi_str_mv 10.1007/s00453-017-0373-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2084396646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084396646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-9483ffdcf9c5fbf4c86405ecb1f3cb9edb5c38c7b7963206586416b3ab66fdaf3</originalsourceid><addsrcrecordid>eNp1kE9PwyAYxonRxDn9AN5IPKNQKG2Py9RpsuhBjUcCFLbOtVSgWfbtpamJJ09v8j7P7_3zAHBN8C3BuLgLGLOcIkwKhGlBET8BM8JohnDOyCmYJaFEjJPiHFyEsMOYZEXFZ-Bzsd8438RtG6B1Hi5d2w5do2VsXAff9NbUw77pNrDp4L2MEq5k3Bo_dl5MPDj_BQ-JnrQE996EkNBLcGblPpir3zoHH48P78sntH5dPS8Xa6Qp4RFVrKTW1tpWOrfKMl1yhnOjFbFUq8rUKte01IVKx9IM8zzphCsqFee2lpbOwc00t_fuezAhip0bfJdWigyXjFacM55cZHJp70LwxoreN630R0GwGPMTU34ixSTG_MTIZBMT-vFd4_8m_w_9AFqGc_M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084396646</pqid></control><display><type>article</type><title>Algorithms for Communication Scheduling in Data Gathering Network with Data Compression</title><source>SpringerLink Journals - AutoHoldings</source><creator>Luo, Wenchang ; Xu, Yao ; Gu, Boyuan ; Tong, Weitian ; Goebel, Randy ; Lin, Guohui</creator><creatorcontrib>Luo, Wenchang ; Xu, Yao ; Gu, Boyuan ; Tong, Weitian ; Goebel, Randy ; Lin, Guohui</creatorcontrib><description>We consider a communication scheduling problem that arises within wireless sensor networks, where data is accumulated by the sensors and transferred directly to a central base station. One may choose to compress the data collected by a sensor, to decrease the data size for transmission, but the cost of compression must be considered. The goal is to designate a subset of sensors to compress their collected data, and then to determine a data transmission order for all the sensors, such that the total compression cost is minimized subject to a bounded data transmission completion time (a.k.a. makespan). A recent result confirms the NP-hardness for this problem, even in the special case where data compression is free. Here we first design a pseudo-polynomial time exact algorithm, articulated within a dynamic programming scheme. This algorithm also solves a variant with the complementary optimization goal—to minimize the makespan while constraining the total compression cost within a given budget. Our second result consists of a bi-factor ( 1 + ϵ , 2 ) -approximation for the problem, where ( 1 + ϵ ) refers to the compression cost and 2 refers to the makespan, and a 2-approximation for the variant. Lastly, we apply a sparsing technique to the dynamic programming exact algorithm, to achieve a dual fully polynomial time approximation scheme for the problem and a usual fully polynomial time approximation scheme for the variant.</description><identifier>ISSN: 0178-4617</identifier><identifier>EISSN: 1432-0541</identifier><identifier>DOI: 10.1007/s00453-017-0373-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithm Analysis and Problem Complexity ; Algorithms ; Approximation ; Completion time ; Computer Science ; Computer Systems Organization and Communication Networks ; Data compression ; Data Structures and Information Theory ; Data transmission ; Dynamic programming ; Mathematical analysis ; Mathematics of Computing ; Polynomials ; Production scheduling ; Remote sensors ; Scheduling ; Sensors ; Set theory ; Theory of Computation ; Wireless communications ; Wireless sensor networks</subject><ispartof>Algorithmica, 2018-11, Vol.80 (11), p.3158-3176</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-9483ffdcf9c5fbf4c86405ecb1f3cb9edb5c38c7b7963206586416b3ab66fdaf3</citedby><cites>FETCH-LOGICAL-c316t-9483ffdcf9c5fbf4c86405ecb1f3cb9edb5c38c7b7963206586416b3ab66fdaf3</cites><orcidid>0000-0003-4283-3396</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00453-017-0373-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00453-017-0373-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Luo, Wenchang</creatorcontrib><creatorcontrib>Xu, Yao</creatorcontrib><creatorcontrib>Gu, Boyuan</creatorcontrib><creatorcontrib>Tong, Weitian</creatorcontrib><creatorcontrib>Goebel, Randy</creatorcontrib><creatorcontrib>Lin, Guohui</creatorcontrib><title>Algorithms for Communication Scheduling in Data Gathering Network with Data Compression</title><title>Algorithmica</title><addtitle>Algorithmica</addtitle><description>We consider a communication scheduling problem that arises within wireless sensor networks, where data is accumulated by the sensors and transferred directly to a central base station. One may choose to compress the data collected by a sensor, to decrease the data size for transmission, but the cost of compression must be considered. The goal is to designate a subset of sensors to compress their collected data, and then to determine a data transmission order for all the sensors, such that the total compression cost is minimized subject to a bounded data transmission completion time (a.k.a. makespan). A recent result confirms the NP-hardness for this problem, even in the special case where data compression is free. Here we first design a pseudo-polynomial time exact algorithm, articulated within a dynamic programming scheme. This algorithm also solves a variant with the complementary optimization goal—to minimize the makespan while constraining the total compression cost within a given budget. Our second result consists of a bi-factor ( 1 + ϵ , 2 ) -approximation for the problem, where ( 1 + ϵ ) refers to the compression cost and 2 refers to the makespan, and a 2-approximation for the variant. Lastly, we apply a sparsing technique to the dynamic programming exact algorithm, to achieve a dual fully polynomial time approximation scheme for the problem and a usual fully polynomial time approximation scheme for the variant.</description><subject>Algorithm Analysis and Problem Complexity</subject><subject>Algorithms</subject><subject>Approximation</subject><subject>Completion time</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Data compression</subject><subject>Data Structures and Information Theory</subject><subject>Data transmission</subject><subject>Dynamic programming</subject><subject>Mathematical analysis</subject><subject>Mathematics of Computing</subject><subject>Polynomials</subject><subject>Production scheduling</subject><subject>Remote sensors</subject><subject>Scheduling</subject><subject>Sensors</subject><subject>Set theory</subject><subject>Theory of Computation</subject><subject>Wireless communications</subject><subject>Wireless sensor networks</subject><issn>0178-4617</issn><issn>1432-0541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE9PwyAYxonRxDn9AN5IPKNQKG2Py9RpsuhBjUcCFLbOtVSgWfbtpamJJ09v8j7P7_3zAHBN8C3BuLgLGLOcIkwKhGlBET8BM8JohnDOyCmYJaFEjJPiHFyEsMOYZEXFZ-Bzsd8438RtG6B1Hi5d2w5do2VsXAff9NbUw77pNrDp4L2MEq5k3Bo_dl5MPDj_BQ-JnrQE996EkNBLcGblPpir3zoHH48P78sntH5dPS8Xa6Qp4RFVrKTW1tpWOrfKMl1yhnOjFbFUq8rUKte01IVKx9IM8zzphCsqFee2lpbOwc00t_fuezAhip0bfJdWigyXjFacM55cZHJp70LwxoreN630R0GwGPMTU34ixSTG_MTIZBMT-vFd4_8m_w_9AFqGc_M</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Luo, Wenchang</creator><creator>Xu, Yao</creator><creator>Gu, Boyuan</creator><creator>Tong, Weitian</creator><creator>Goebel, Randy</creator><creator>Lin, Guohui</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4283-3396</orcidid></search><sort><creationdate>20181101</creationdate><title>Algorithms for Communication Scheduling in Data Gathering Network with Data Compression</title><author>Luo, Wenchang ; Xu, Yao ; Gu, Boyuan ; Tong, Weitian ; Goebel, Randy ; Lin, Guohui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-9483ffdcf9c5fbf4c86405ecb1f3cb9edb5c38c7b7963206586416b3ab66fdaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithm Analysis and Problem Complexity</topic><topic>Algorithms</topic><topic>Approximation</topic><topic>Completion time</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Data compression</topic><topic>Data Structures and Information Theory</topic><topic>Data transmission</topic><topic>Dynamic programming</topic><topic>Mathematical analysis</topic><topic>Mathematics of Computing</topic><topic>Polynomials</topic><topic>Production scheduling</topic><topic>Remote sensors</topic><topic>Scheduling</topic><topic>Sensors</topic><topic>Set theory</topic><topic>Theory of Computation</topic><topic>Wireless communications</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Wenchang</creatorcontrib><creatorcontrib>Xu, Yao</creatorcontrib><creatorcontrib>Gu, Boyuan</creatorcontrib><creatorcontrib>Tong, Weitian</creatorcontrib><creatorcontrib>Goebel, Randy</creatorcontrib><creatorcontrib>Lin, Guohui</creatorcontrib><collection>CrossRef</collection><jtitle>Algorithmica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Wenchang</au><au>Xu, Yao</au><au>Gu, Boyuan</au><au>Tong, Weitian</au><au>Goebel, Randy</au><au>Lin, Guohui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algorithms for Communication Scheduling in Data Gathering Network with Data Compression</atitle><jtitle>Algorithmica</jtitle><stitle>Algorithmica</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>80</volume><issue>11</issue><spage>3158</spage><epage>3176</epage><pages>3158-3176</pages><issn>0178-4617</issn><eissn>1432-0541</eissn><abstract>We consider a communication scheduling problem that arises within wireless sensor networks, where data is accumulated by the sensors and transferred directly to a central base station. One may choose to compress the data collected by a sensor, to decrease the data size for transmission, but the cost of compression must be considered. The goal is to designate a subset of sensors to compress their collected data, and then to determine a data transmission order for all the sensors, such that the total compression cost is minimized subject to a bounded data transmission completion time (a.k.a. makespan). A recent result confirms the NP-hardness for this problem, even in the special case where data compression is free. Here we first design a pseudo-polynomial time exact algorithm, articulated within a dynamic programming scheme. This algorithm also solves a variant with the complementary optimization goal—to minimize the makespan while constraining the total compression cost within a given budget. Our second result consists of a bi-factor ( 1 + ϵ , 2 ) -approximation for the problem, where ( 1 + ϵ ) refers to the compression cost and 2 refers to the makespan, and a 2-approximation for the variant. Lastly, we apply a sparsing technique to the dynamic programming exact algorithm, to achieve a dual fully polynomial time approximation scheme for the problem and a usual fully polynomial time approximation scheme for the variant.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00453-017-0373-6</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-4283-3396</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0178-4617
ispartof Algorithmica, 2018-11, Vol.80 (11), p.3158-3176
issn 0178-4617
1432-0541
language eng
recordid cdi_proquest_journals_2084396646
source SpringerLink Journals - AutoHoldings
subjects Algorithm Analysis and Problem Complexity
Algorithms
Approximation
Completion time
Computer Science
Computer Systems Organization and Communication Networks
Data compression
Data Structures and Information Theory
Data transmission
Dynamic programming
Mathematical analysis
Mathematics of Computing
Polynomials
Production scheduling
Remote sensors
Scheduling
Sensors
Set theory
Theory of Computation
Wireless communications
Wireless sensor networks
title Algorithms for Communication Scheduling in Data Gathering Network with Data Compression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A41%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algorithms%20for%20Communication%20Scheduling%20in%20Data%20Gathering%20Network%20with%20Data%20Compression&rft.jtitle=Algorithmica&rft.au=Luo,%20Wenchang&rft.date=2018-11-01&rft.volume=80&rft.issue=11&rft.spage=3158&rft.epage=3176&rft.pages=3158-3176&rft.issn=0178-4617&rft.eissn=1432-0541&rft_id=info:doi/10.1007/s00453-017-0373-6&rft_dat=%3Cproquest_cross%3E2084396646%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084396646&rft_id=info:pmid/&rfr_iscdi=true