On McMullen's and other inequalities for the Thurston norm of link complements

In a recent paper, McMullen showed an inequality between the Thurston norm and the Alexander norm of a 3-manifold. This generalizes the well-known fact that twice the genus of a knot is bounded from below by the degree of the Alexander polynomial. We extend the Bennequin inequality for links to an i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2001-06
Hauptverfasser: Dasbach, Oliver T, Mangum, Brian S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Dasbach, Oliver T
Mangum, Brian S
description In a recent paper, McMullen showed an inequality between the Thurston norm and the Alexander norm of a 3-manifold. This generalizes the well-known fact that twice the genus of a knot is bounded from below by the degree of the Alexander polynomial. We extend the Bennequin inequality for links to an inequality for all points of the Thurston norm, if the manifold is a link complement. We compare these two inequalities on two classes of closed braids. In an additional section we discuss a conjectured inequality due to Morton for certain points of the Thurston norm. We prove Morton's conjecture for closed 3-braids.
doi_str_mv 10.48550/arxiv.9911172
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2084366202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084366202</sourcerecordid><originalsourceid>FETCH-proquest_journals_20843662023</originalsourceid><addsrcrecordid>eNqNij0LwjAUAIMgKOrq_MDBqZq8tLWdRXFRl-4SNMVo-qL5EH--Dv4Ap4O7Y2wq-CKvioIvlX-b16KuhRAr7LEhSimyKkccsEkIN845lissCjlkhyPB_rxP1mqaB1B0ARev2oMh_UzKmmh0gNZ5-FporsmH6AjI-Q5cC9bQHc6ue1jdaYphzPqtskFPfhyx2XbTrHfZw7tn0iGebi55-qYT8iqXZYkc5X_XB2W7Q8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084366202</pqid></control><display><type>article</type><title>On McMullen's and other inequalities for the Thurston norm of link complements</title><source>Freely Accessible Journals_</source><creator>Dasbach, Oliver T ; Mangum, Brian S</creator><creatorcontrib>Dasbach, Oliver T ; Mangum, Brian S</creatorcontrib><description>In a recent paper, McMullen showed an inequality between the Thurston norm and the Alexander norm of a 3-manifold. This generalizes the well-known fact that twice the genus of a knot is bounded from below by the degree of the Alexander polynomial. We extend the Bennequin inequality for links to an inequality for all points of the Thurston norm, if the manifold is a link complement. We compare these two inequalities on two classes of closed braids. In an additional section we discuss a conjectured inequality due to Morton for certain points of the Thurston norm. We prove Morton's conjecture for closed 3-braids.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.9911172</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Braiding ; Inequalities ; Inequality ; Manifolds ; Polynomials</subject><ispartof>arXiv.org, 2001-06</ispartof><rights>2001. This work is published under https://arxiv.org/licenses/assumed-1991-2003/license.html (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780,27902</link.rule.ids></links><search><creatorcontrib>Dasbach, Oliver T</creatorcontrib><creatorcontrib>Mangum, Brian S</creatorcontrib><title>On McMullen's and other inequalities for the Thurston norm of link complements</title><title>arXiv.org</title><description>In a recent paper, McMullen showed an inequality between the Thurston norm and the Alexander norm of a 3-manifold. This generalizes the well-known fact that twice the genus of a knot is bounded from below by the degree of the Alexander polynomial. We extend the Bennequin inequality for links to an inequality for all points of the Thurston norm, if the manifold is a link complement. We compare these two inequalities on two classes of closed braids. In an additional section we discuss a conjectured inequality due to Morton for certain points of the Thurston norm. We prove Morton's conjecture for closed 3-braids.</description><subject>Braiding</subject><subject>Inequalities</subject><subject>Inequality</subject><subject>Manifolds</subject><subject>Polynomials</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNij0LwjAUAIMgKOrq_MDBqZq8tLWdRXFRl-4SNMVo-qL5EH--Dv4Ap4O7Y2wq-CKvioIvlX-b16KuhRAr7LEhSimyKkccsEkIN845lissCjlkhyPB_rxP1mqaB1B0ARev2oMh_UzKmmh0gNZ5-FporsmH6AjI-Q5cC9bQHc6ue1jdaYphzPqtskFPfhyx2XbTrHfZw7tn0iGebi55-qYT8iqXZYkc5X_XB2W7Q8A</recordid><startdate>20010605</startdate><enddate>20010605</enddate><creator>Dasbach, Oliver T</creator><creator>Mangum, Brian S</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20010605</creationdate><title>On McMullen's and other inequalities for the Thurston norm of link complements</title><author>Dasbach, Oliver T ; Mangum, Brian S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20843662023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Braiding</topic><topic>Inequalities</topic><topic>Inequality</topic><topic>Manifolds</topic><topic>Polynomials</topic><toplevel>online_resources</toplevel><creatorcontrib>Dasbach, Oliver T</creatorcontrib><creatorcontrib>Mangum, Brian S</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dasbach, Oliver T</au><au>Mangum, Brian S</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On McMullen's and other inequalities for the Thurston norm of link complements</atitle><jtitle>arXiv.org</jtitle><date>2001-06-05</date><risdate>2001</risdate><eissn>2331-8422</eissn><abstract>In a recent paper, McMullen showed an inequality between the Thurston norm and the Alexander norm of a 3-manifold. This generalizes the well-known fact that twice the genus of a knot is bounded from below by the degree of the Alexander polynomial. We extend the Bennequin inequality for links to an inequality for all points of the Thurston norm, if the manifold is a link complement. We compare these two inequalities on two classes of closed braids. In an additional section we discuss a conjectured inequality due to Morton for certain points of the Thurston norm. We prove Morton's conjecture for closed 3-braids.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.9911172</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2001-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2084366202
source Freely Accessible Journals_
subjects Braiding
Inequalities
Inequality
Manifolds
Polynomials
title On McMullen's and other inequalities for the Thurston norm of link complements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A01%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20McMullen's%20and%20other%20inequalities%20for%20the%20Thurston%20norm%20of%20link%20complements&rft.jtitle=arXiv.org&rft.au=Dasbach,%20Oliver%20T&rft.date=2001-06-05&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.9911172&rft_dat=%3Cproquest%3E2084366202%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084366202&rft_id=info:pmid/&rfr_iscdi=true