Highly Productive Oxidative Biocatalysis in Continuous Flow by Enhancing the Aqueous Equilibrium Solubility of Oxygen

We report a simple, mild, and synthetically clean approach to accelerate the rate of enzymatic oxidation reactions by a factor of up to 100 when compared to conventional batch gas/liquid systems. Biocatalytic decomposition of H2O2 is used to produce a soluble source of O2 directly in reaction media,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2018-08, Vol.57 (33), p.10535-10539
Hauptverfasser: Chapman, Michael R., Cosgrove, Sebastian C., Turner, Nicholas J., Kapur, Nikil, Blacker, A. John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10539
container_issue 33
container_start_page 10535
container_title Angewandte Chemie International Edition
container_volume 57
creator Chapman, Michael R.
Cosgrove, Sebastian C.
Turner, Nicholas J.
Kapur, Nikil
Blacker, A. John
description We report a simple, mild, and synthetically clean approach to accelerate the rate of enzymatic oxidation reactions by a factor of up to 100 when compared to conventional batch gas/liquid systems. Biocatalytic decomposition of H2O2 is used to produce a soluble source of O2 directly in reaction media, thereby enabling the concentration of aqueous O2 to be increased beyond equilibrium solubility under safe and practical conditions. To best exploit this method, a novel flow reactor was developed to maximize productivity (g product L−1 h−1). This scalable benchtop method provides a distinct advantage over conventional bio‐oxidation in that no pressurized gas or specialist equipment is employed. The method is general across different oxidase enzymes and compatible with a variety of functional groups. These results culminate in record space‐time yields for bio‐oxidation. Go with the flow: Decomposition of H2O2 produces a soluble source of O2 for enzymatic oxidation reactions directly in the reaction media, thereby increasing the concentration of aqueous O2 beyond equilibrium solubility. A novel multipoint‐injection flow reactor was developed to maximize productivity. This method requires no pressurized gas or specialist equipment and improves the reaction rate by up to 100‐fold compared to conventional batch gas/liquid systems.
doi_str_mv 10.1002/anie.201803675
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2084289829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084289829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4505-b95068b2e254c637ac35b6d207f79a8cca390e4b6144ff39e2f005845126fb5b3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0E4ntlRJaYU_yZOGOpWoqEAAmYI9t1WlepDXFMyb_HpVBGJp91zz13egG4wGiAESLX0lkzIAgLRPOC74FjzAnOaFHQ_VQzSrNCcHwETkJYJl4IlB-CI1IWLI3gYxCndr5oevjU-lnUnf0w8PHTzuR3dWO9lp1s-mADtA6OvOusiz4GOGn8Gqoejt1COm3dHHYLA4fv0Wy64_doG6taG1fw2TdRpV_XQ18neT837gwc1LIJ5vznPQWvk_HLaJrdP97ejYb3mWYc8UyVHOVCEUM40zktpKZc5TOCiroopdBa0hIZpnLMWF3T0pAaIS4YxySvFVf0FFxtvW-tT6eFrlr62Lq0siJIMCJKQcpEDbaUbn0Iramrt9auZNtXGFWblKtNytUu5TRw-aONamVmO_w31gSUW2BtG9P_o6uGD3fjP_kXvN2KVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084289829</pqid></control><display><type>article</type><title>Highly Productive Oxidative Biocatalysis in Continuous Flow by Enhancing the Aqueous Equilibrium Solubility of Oxygen</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Chapman, Michael R. ; Cosgrove, Sebastian C. ; Turner, Nicholas J. ; Kapur, Nikil ; Blacker, A. John</creator><creatorcontrib>Chapman, Michael R. ; Cosgrove, Sebastian C. ; Turner, Nicholas J. ; Kapur, Nikil ; Blacker, A. John</creatorcontrib><description>We report a simple, mild, and synthetically clean approach to accelerate the rate of enzymatic oxidation reactions by a factor of up to 100 when compared to conventional batch gas/liquid systems. Biocatalytic decomposition of H2O2 is used to produce a soluble source of O2 directly in reaction media, thereby enabling the concentration of aqueous O2 to be increased beyond equilibrium solubility under safe and practical conditions. To best exploit this method, a novel flow reactor was developed to maximize productivity (g product L−1 h−1). This scalable benchtop method provides a distinct advantage over conventional bio‐oxidation in that no pressurized gas or specialist equipment is employed. The method is general across different oxidase enzymes and compatible with a variety of functional groups. These results culminate in record space‐time yields for bio‐oxidation. Go with the flow: Decomposition of H2O2 produces a soluble source of O2 for enzymatic oxidation reactions directly in the reaction media, thereby increasing the concentration of aqueous O2 beyond equilibrium solubility. A novel multipoint‐injection flow reactor was developed to maximize productivity. This method requires no pressurized gas or specialist equipment and improves the reaction rate by up to 100‐fold compared to conventional batch gas/liquid systems.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201803675</identifier><identifier>PMID: 29741801</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Biocatalysis ; Catalysis ; Continuous flow ; flow reactors ; Functional groups ; Gas-liquid systems ; Hydrogen peroxide ; Hydrogen Peroxide - chemistry ; Monoamine Oxidase - metabolism ; Oxidation ; Oxidation-Reduction ; Oxidoreductases - metabolism ; Oxygen - chemistry ; Oxygen - metabolism ; Solubility ; space-time yields ; Water - chemistry</subject><ispartof>Angewandte Chemie International Edition, 2018-08, Vol.57 (33), p.10535-10539</ispartof><rights>2018 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4505-b95068b2e254c637ac35b6d207f79a8cca390e4b6144ff39e2f005845126fb5b3</citedby><cites>FETCH-LOGICAL-c4505-b95068b2e254c637ac35b6d207f79a8cca390e4b6144ff39e2f005845126fb5b3</cites><orcidid>0000-0002-8708-0781 ; 0000-0003-4898-2712 ; 0000-0003-1041-8390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201803675$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201803675$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29741801$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chapman, Michael R.</creatorcontrib><creatorcontrib>Cosgrove, Sebastian C.</creatorcontrib><creatorcontrib>Turner, Nicholas J.</creatorcontrib><creatorcontrib>Kapur, Nikil</creatorcontrib><creatorcontrib>Blacker, A. John</creatorcontrib><title>Highly Productive Oxidative Biocatalysis in Continuous Flow by Enhancing the Aqueous Equilibrium Solubility of Oxygen</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>We report a simple, mild, and synthetically clean approach to accelerate the rate of enzymatic oxidation reactions by a factor of up to 100 when compared to conventional batch gas/liquid systems. Biocatalytic decomposition of H2O2 is used to produce a soluble source of O2 directly in reaction media, thereby enabling the concentration of aqueous O2 to be increased beyond equilibrium solubility under safe and practical conditions. To best exploit this method, a novel flow reactor was developed to maximize productivity (g product L−1 h−1). This scalable benchtop method provides a distinct advantage over conventional bio‐oxidation in that no pressurized gas or specialist equipment is employed. The method is general across different oxidase enzymes and compatible with a variety of functional groups. These results culminate in record space‐time yields for bio‐oxidation. Go with the flow: Decomposition of H2O2 produces a soluble source of O2 for enzymatic oxidation reactions directly in the reaction media, thereby increasing the concentration of aqueous O2 beyond equilibrium solubility. A novel multipoint‐injection flow reactor was developed to maximize productivity. This method requires no pressurized gas or specialist equipment and improves the reaction rate by up to 100‐fold compared to conventional batch gas/liquid systems.</description><subject>Biocatalysis</subject><subject>Catalysis</subject><subject>Continuous flow</subject><subject>flow reactors</subject><subject>Functional groups</subject><subject>Gas-liquid systems</subject><subject>Hydrogen peroxide</subject><subject>Hydrogen Peroxide - chemistry</subject><subject>Monoamine Oxidase - metabolism</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxidoreductases - metabolism</subject><subject>Oxygen - chemistry</subject><subject>Oxygen - metabolism</subject><subject>Solubility</subject><subject>space-time yields</subject><subject>Water - chemistry</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkD1PwzAQhi0E4ntlRJaYU_yZOGOpWoqEAAmYI9t1WlepDXFMyb_HpVBGJp91zz13egG4wGiAESLX0lkzIAgLRPOC74FjzAnOaFHQ_VQzSrNCcHwETkJYJl4IlB-CI1IWLI3gYxCndr5oevjU-lnUnf0w8PHTzuR3dWO9lp1s-mADtA6OvOusiz4GOGn8Gqoejt1COm3dHHYLA4fv0Wy64_doG6taG1fw2TdRpV_XQ18neT837gwc1LIJ5vznPQWvk_HLaJrdP97ejYb3mWYc8UyVHOVCEUM40zktpKZc5TOCiroopdBa0hIZpnLMWF3T0pAaIS4YxySvFVf0FFxtvW-tT6eFrlr62Lq0siJIMCJKQcpEDbaUbn0Iramrt9auZNtXGFWblKtNytUu5TRw-aONamVmO_w31gSUW2BtG9P_o6uGD3fjP_kXvN2KVw</recordid><startdate>20180813</startdate><enddate>20180813</enddate><creator>Chapman, Michael R.</creator><creator>Cosgrove, Sebastian C.</creator><creator>Turner, Nicholas J.</creator><creator>Kapur, Nikil</creator><creator>Blacker, A. John</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0002-8708-0781</orcidid><orcidid>https://orcid.org/0000-0003-4898-2712</orcidid><orcidid>https://orcid.org/0000-0003-1041-8390</orcidid></search><sort><creationdate>20180813</creationdate><title>Highly Productive Oxidative Biocatalysis in Continuous Flow by Enhancing the Aqueous Equilibrium Solubility of Oxygen</title><author>Chapman, Michael R. ; Cosgrove, Sebastian C. ; Turner, Nicholas J. ; Kapur, Nikil ; Blacker, A. John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4505-b95068b2e254c637ac35b6d207f79a8cca390e4b6144ff39e2f005845126fb5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biocatalysis</topic><topic>Catalysis</topic><topic>Continuous flow</topic><topic>flow reactors</topic><topic>Functional groups</topic><topic>Gas-liquid systems</topic><topic>Hydrogen peroxide</topic><topic>Hydrogen Peroxide - chemistry</topic><topic>Monoamine Oxidase - metabolism</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxidoreductases - metabolism</topic><topic>Oxygen - chemistry</topic><topic>Oxygen - metabolism</topic><topic>Solubility</topic><topic>space-time yields</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chapman, Michael R.</creatorcontrib><creatorcontrib>Cosgrove, Sebastian C.</creatorcontrib><creatorcontrib>Turner, Nicholas J.</creatorcontrib><creatorcontrib>Kapur, Nikil</creatorcontrib><creatorcontrib>Blacker, A. John</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chapman, Michael R.</au><au>Cosgrove, Sebastian C.</au><au>Turner, Nicholas J.</au><au>Kapur, Nikil</au><au>Blacker, A. John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Productive Oxidative Biocatalysis in Continuous Flow by Enhancing the Aqueous Equilibrium Solubility of Oxygen</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2018-08-13</date><risdate>2018</risdate><volume>57</volume><issue>33</issue><spage>10535</spage><epage>10539</epage><pages>10535-10539</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>We report a simple, mild, and synthetically clean approach to accelerate the rate of enzymatic oxidation reactions by a factor of up to 100 when compared to conventional batch gas/liquid systems. Biocatalytic decomposition of H2O2 is used to produce a soluble source of O2 directly in reaction media, thereby enabling the concentration of aqueous O2 to be increased beyond equilibrium solubility under safe and practical conditions. To best exploit this method, a novel flow reactor was developed to maximize productivity (g product L−1 h−1). This scalable benchtop method provides a distinct advantage over conventional bio‐oxidation in that no pressurized gas or specialist equipment is employed. The method is general across different oxidase enzymes and compatible with a variety of functional groups. These results culminate in record space‐time yields for bio‐oxidation. Go with the flow: Decomposition of H2O2 produces a soluble source of O2 for enzymatic oxidation reactions directly in the reaction media, thereby increasing the concentration of aqueous O2 beyond equilibrium solubility. A novel multipoint‐injection flow reactor was developed to maximize productivity. This method requires no pressurized gas or specialist equipment and improves the reaction rate by up to 100‐fold compared to conventional batch gas/liquid systems.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29741801</pmid><doi>10.1002/anie.201803675</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-8708-0781</orcidid><orcidid>https://orcid.org/0000-0003-4898-2712</orcidid><orcidid>https://orcid.org/0000-0003-1041-8390</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2018-08, Vol.57 (33), p.10535-10539
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_journals_2084289829
source MEDLINE; Wiley Online Library All Journals
subjects Biocatalysis
Catalysis
Continuous flow
flow reactors
Functional groups
Gas-liquid systems
Hydrogen peroxide
Hydrogen Peroxide - chemistry
Monoamine Oxidase - metabolism
Oxidation
Oxidation-Reduction
Oxidoreductases - metabolism
Oxygen - chemistry
Oxygen - metabolism
Solubility
space-time yields
Water - chemistry
title Highly Productive Oxidative Biocatalysis in Continuous Flow by Enhancing the Aqueous Equilibrium Solubility of Oxygen
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T00%3A01%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Productive%20Oxidative%20Biocatalysis%20in%20Continuous%20Flow%20by%20Enhancing%20the%20Aqueous%20Equilibrium%20Solubility%20of%20Oxygen&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Chapman,%20Michael%20R.&rft.date=2018-08-13&rft.volume=57&rft.issue=33&rft.spage=10535&rft.epage=10539&rft.pages=10535-10539&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201803675&rft_dat=%3Cproquest_cross%3E2084289829%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084289829&rft_id=info:pmid/29741801&rfr_iscdi=true