Highly Productive Oxidative Biocatalysis in Continuous Flow by Enhancing the Aqueous Equilibrium Solubility of Oxygen
We report a simple, mild, and synthetically clean approach to accelerate the rate of enzymatic oxidation reactions by a factor of up to 100 when compared to conventional batch gas/liquid systems. Biocatalytic decomposition of H2O2 is used to produce a soluble source of O2 directly in reaction media,...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2018-08, Vol.57 (33), p.10535-10539 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10539 |
---|---|
container_issue | 33 |
container_start_page | 10535 |
container_title | Angewandte Chemie International Edition |
container_volume | 57 |
creator | Chapman, Michael R. Cosgrove, Sebastian C. Turner, Nicholas J. Kapur, Nikil Blacker, A. John |
description | We report a simple, mild, and synthetically clean approach to accelerate the rate of enzymatic oxidation reactions by a factor of up to 100 when compared to conventional batch gas/liquid systems. Biocatalytic decomposition of H2O2 is used to produce a soluble source of O2 directly in reaction media, thereby enabling the concentration of aqueous O2 to be increased beyond equilibrium solubility under safe and practical conditions. To best exploit this method, a novel flow reactor was developed to maximize productivity (g product L−1 h−1). This scalable benchtop method provides a distinct advantage over conventional bio‐oxidation in that no pressurized gas or specialist equipment is employed. The method is general across different oxidase enzymes and compatible with a variety of functional groups. These results culminate in record space‐time yields for bio‐oxidation.
Go with the flow: Decomposition of H2O2 produces a soluble source of O2 for enzymatic oxidation reactions directly in the reaction media, thereby increasing the concentration of aqueous O2 beyond equilibrium solubility. A novel multipoint‐injection flow reactor was developed to maximize productivity. This method requires no pressurized gas or specialist equipment and improves the reaction rate by up to 100‐fold compared to conventional batch gas/liquid systems. |
doi_str_mv | 10.1002/anie.201803675 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2084289829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084289829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4505-b95068b2e254c637ac35b6d207f79a8cca390e4b6144ff39e2f005845126fb5b3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0E4ntlRJaYU_yZOGOpWoqEAAmYI9t1WlepDXFMyb_HpVBGJp91zz13egG4wGiAESLX0lkzIAgLRPOC74FjzAnOaFHQ_VQzSrNCcHwETkJYJl4IlB-CI1IWLI3gYxCndr5oevjU-lnUnf0w8PHTzuR3dWO9lp1s-mADtA6OvOusiz4GOGn8Gqoejt1COm3dHHYLA4fv0Wy64_doG6taG1fw2TdRpV_XQ18neT837gwc1LIJ5vznPQWvk_HLaJrdP97ejYb3mWYc8UyVHOVCEUM40zktpKZc5TOCiroopdBa0hIZpnLMWF3T0pAaIS4YxySvFVf0FFxtvW-tT6eFrlr62Lq0siJIMCJKQcpEDbaUbn0Iramrt9auZNtXGFWblKtNytUu5TRw-aONamVmO_w31gSUW2BtG9P_o6uGD3fjP_kXvN2KVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084289829</pqid></control><display><type>article</type><title>Highly Productive Oxidative Biocatalysis in Continuous Flow by Enhancing the Aqueous Equilibrium Solubility of Oxygen</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Chapman, Michael R. ; Cosgrove, Sebastian C. ; Turner, Nicholas J. ; Kapur, Nikil ; Blacker, A. John</creator><creatorcontrib>Chapman, Michael R. ; Cosgrove, Sebastian C. ; Turner, Nicholas J. ; Kapur, Nikil ; Blacker, A. John</creatorcontrib><description>We report a simple, mild, and synthetically clean approach to accelerate the rate of enzymatic oxidation reactions by a factor of up to 100 when compared to conventional batch gas/liquid systems. Biocatalytic decomposition of H2O2 is used to produce a soluble source of O2 directly in reaction media, thereby enabling the concentration of aqueous O2 to be increased beyond equilibrium solubility under safe and practical conditions. To best exploit this method, a novel flow reactor was developed to maximize productivity (g product L−1 h−1). This scalable benchtop method provides a distinct advantage over conventional bio‐oxidation in that no pressurized gas or specialist equipment is employed. The method is general across different oxidase enzymes and compatible with a variety of functional groups. These results culminate in record space‐time yields for bio‐oxidation.
Go with the flow: Decomposition of H2O2 produces a soluble source of O2 for enzymatic oxidation reactions directly in the reaction media, thereby increasing the concentration of aqueous O2 beyond equilibrium solubility. A novel multipoint‐injection flow reactor was developed to maximize productivity. This method requires no pressurized gas or specialist equipment and improves the reaction rate by up to 100‐fold compared to conventional batch gas/liquid systems.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201803675</identifier><identifier>PMID: 29741801</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Biocatalysis ; Catalysis ; Continuous flow ; flow reactors ; Functional groups ; Gas-liquid systems ; Hydrogen peroxide ; Hydrogen Peroxide - chemistry ; Monoamine Oxidase - metabolism ; Oxidation ; Oxidation-Reduction ; Oxidoreductases - metabolism ; Oxygen - chemistry ; Oxygen - metabolism ; Solubility ; space-time yields ; Water - chemistry</subject><ispartof>Angewandte Chemie International Edition, 2018-08, Vol.57 (33), p.10535-10539</ispartof><rights>2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4505-b95068b2e254c637ac35b6d207f79a8cca390e4b6144ff39e2f005845126fb5b3</citedby><cites>FETCH-LOGICAL-c4505-b95068b2e254c637ac35b6d207f79a8cca390e4b6144ff39e2f005845126fb5b3</cites><orcidid>0000-0002-8708-0781 ; 0000-0003-4898-2712 ; 0000-0003-1041-8390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201803675$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201803675$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29741801$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chapman, Michael R.</creatorcontrib><creatorcontrib>Cosgrove, Sebastian C.</creatorcontrib><creatorcontrib>Turner, Nicholas J.</creatorcontrib><creatorcontrib>Kapur, Nikil</creatorcontrib><creatorcontrib>Blacker, A. John</creatorcontrib><title>Highly Productive Oxidative Biocatalysis in Continuous Flow by Enhancing the Aqueous Equilibrium Solubility of Oxygen</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>We report a simple, mild, and synthetically clean approach to accelerate the rate of enzymatic oxidation reactions by a factor of up to 100 when compared to conventional batch gas/liquid systems. Biocatalytic decomposition of H2O2 is used to produce a soluble source of O2 directly in reaction media, thereby enabling the concentration of aqueous O2 to be increased beyond equilibrium solubility under safe and practical conditions. To best exploit this method, a novel flow reactor was developed to maximize productivity (g product L−1 h−1). This scalable benchtop method provides a distinct advantage over conventional bio‐oxidation in that no pressurized gas or specialist equipment is employed. The method is general across different oxidase enzymes and compatible with a variety of functional groups. These results culminate in record space‐time yields for bio‐oxidation.
Go with the flow: Decomposition of H2O2 produces a soluble source of O2 for enzymatic oxidation reactions directly in the reaction media, thereby increasing the concentration of aqueous O2 beyond equilibrium solubility. A novel multipoint‐injection flow reactor was developed to maximize productivity. This method requires no pressurized gas or specialist equipment and improves the reaction rate by up to 100‐fold compared to conventional batch gas/liquid systems.</description><subject>Biocatalysis</subject><subject>Catalysis</subject><subject>Continuous flow</subject><subject>flow reactors</subject><subject>Functional groups</subject><subject>Gas-liquid systems</subject><subject>Hydrogen peroxide</subject><subject>Hydrogen Peroxide - chemistry</subject><subject>Monoamine Oxidase - metabolism</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxidoreductases - metabolism</subject><subject>Oxygen - chemistry</subject><subject>Oxygen - metabolism</subject><subject>Solubility</subject><subject>space-time yields</subject><subject>Water - chemistry</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkD1PwzAQhi0E4ntlRJaYU_yZOGOpWoqEAAmYI9t1WlepDXFMyb_HpVBGJp91zz13egG4wGiAESLX0lkzIAgLRPOC74FjzAnOaFHQ_VQzSrNCcHwETkJYJl4IlB-CI1IWLI3gYxCndr5oevjU-lnUnf0w8PHTzuR3dWO9lp1s-mADtA6OvOusiz4GOGn8Gqoejt1COm3dHHYLA4fv0Wy64_doG6taG1fw2TdRpV_XQ18neT837gwc1LIJ5vznPQWvk_HLaJrdP97ejYb3mWYc8UyVHOVCEUM40zktpKZc5TOCiroopdBa0hIZpnLMWF3T0pAaIS4YxySvFVf0FFxtvW-tT6eFrlr62Lq0siJIMCJKQcpEDbaUbn0Iramrt9auZNtXGFWblKtNytUu5TRw-aONamVmO_w31gSUW2BtG9P_o6uGD3fjP_kXvN2KVw</recordid><startdate>20180813</startdate><enddate>20180813</enddate><creator>Chapman, Michael R.</creator><creator>Cosgrove, Sebastian C.</creator><creator>Turner, Nicholas J.</creator><creator>Kapur, Nikil</creator><creator>Blacker, A. John</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0002-8708-0781</orcidid><orcidid>https://orcid.org/0000-0003-4898-2712</orcidid><orcidid>https://orcid.org/0000-0003-1041-8390</orcidid></search><sort><creationdate>20180813</creationdate><title>Highly Productive Oxidative Biocatalysis in Continuous Flow by Enhancing the Aqueous Equilibrium Solubility of Oxygen</title><author>Chapman, Michael R. ; Cosgrove, Sebastian C. ; Turner, Nicholas J. ; Kapur, Nikil ; Blacker, A. John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4505-b95068b2e254c637ac35b6d207f79a8cca390e4b6144ff39e2f005845126fb5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biocatalysis</topic><topic>Catalysis</topic><topic>Continuous flow</topic><topic>flow reactors</topic><topic>Functional groups</topic><topic>Gas-liquid systems</topic><topic>Hydrogen peroxide</topic><topic>Hydrogen Peroxide - chemistry</topic><topic>Monoamine Oxidase - metabolism</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxidoreductases - metabolism</topic><topic>Oxygen - chemistry</topic><topic>Oxygen - metabolism</topic><topic>Solubility</topic><topic>space-time yields</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chapman, Michael R.</creatorcontrib><creatorcontrib>Cosgrove, Sebastian C.</creatorcontrib><creatorcontrib>Turner, Nicholas J.</creatorcontrib><creatorcontrib>Kapur, Nikil</creatorcontrib><creatorcontrib>Blacker, A. John</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chapman, Michael R.</au><au>Cosgrove, Sebastian C.</au><au>Turner, Nicholas J.</au><au>Kapur, Nikil</au><au>Blacker, A. John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Productive Oxidative Biocatalysis in Continuous Flow by Enhancing the Aqueous Equilibrium Solubility of Oxygen</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2018-08-13</date><risdate>2018</risdate><volume>57</volume><issue>33</issue><spage>10535</spage><epage>10539</epage><pages>10535-10539</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>We report a simple, mild, and synthetically clean approach to accelerate the rate of enzymatic oxidation reactions by a factor of up to 100 when compared to conventional batch gas/liquid systems. Biocatalytic decomposition of H2O2 is used to produce a soluble source of O2 directly in reaction media, thereby enabling the concentration of aqueous O2 to be increased beyond equilibrium solubility under safe and practical conditions. To best exploit this method, a novel flow reactor was developed to maximize productivity (g product L−1 h−1). This scalable benchtop method provides a distinct advantage over conventional bio‐oxidation in that no pressurized gas or specialist equipment is employed. The method is general across different oxidase enzymes and compatible with a variety of functional groups. These results culminate in record space‐time yields for bio‐oxidation.
Go with the flow: Decomposition of H2O2 produces a soluble source of O2 for enzymatic oxidation reactions directly in the reaction media, thereby increasing the concentration of aqueous O2 beyond equilibrium solubility. A novel multipoint‐injection flow reactor was developed to maximize productivity. This method requires no pressurized gas or specialist equipment and improves the reaction rate by up to 100‐fold compared to conventional batch gas/liquid systems.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29741801</pmid><doi>10.1002/anie.201803675</doi><tpages>5</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-8708-0781</orcidid><orcidid>https://orcid.org/0000-0003-4898-2712</orcidid><orcidid>https://orcid.org/0000-0003-1041-8390</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2018-08, Vol.57 (33), p.10535-10539 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_journals_2084289829 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Biocatalysis Catalysis Continuous flow flow reactors Functional groups Gas-liquid systems Hydrogen peroxide Hydrogen Peroxide - chemistry Monoamine Oxidase - metabolism Oxidation Oxidation-Reduction Oxidoreductases - metabolism Oxygen - chemistry Oxygen - metabolism Solubility space-time yields Water - chemistry |
title | Highly Productive Oxidative Biocatalysis in Continuous Flow by Enhancing the Aqueous Equilibrium Solubility of Oxygen |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T00%3A01%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Productive%20Oxidative%20Biocatalysis%20in%20Continuous%20Flow%20by%20Enhancing%20the%20Aqueous%20Equilibrium%20Solubility%20of%20Oxygen&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Chapman,%20Michael%20R.&rft.date=2018-08-13&rft.volume=57&rft.issue=33&rft.spage=10535&rft.epage=10539&rft.pages=10535-10539&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201803675&rft_dat=%3Cproquest_cross%3E2084289829%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084289829&rft_id=info:pmid/29741801&rfr_iscdi=true |