Solar Water Splitting with a Hydrogenase Integrated in Photoelectrochemical Tandem Cells

Hydrogenases (H2ases) are benchmark electrocatalysts for H2 production, both in biology and (photo)catalysis in vitro. We report the tailoring of a p‐type Si photocathode for optimal loading and wiring of H2ase through the introduction of a hierarchical inverse opal (IO) TiO2 interlayer. This proton...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2018-08, Vol.130 (33), p.10755-10759
Hauptverfasser: Nam, Dong Heon, Zhang, Jenny Z., Andrei, Virgil, Kornienko, Nikolay, Heidary, Nina, Wagner, Andreas, Nakanishi, Kenichi, Sokol, Katarzyna P., Slater, Barnaby, Zebger, Ingo, Hofmann, Stephan, Fontecilla‐Camps, Juan C., Park, Chan Beum, Reisner, Erwin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10759
container_issue 33
container_start_page 10755
container_title Angewandte Chemie
container_volume 130
creator Nam, Dong Heon
Zhang, Jenny Z.
Andrei, Virgil
Kornienko, Nikolay
Heidary, Nina
Wagner, Andreas
Nakanishi, Kenichi
Sokol, Katarzyna P.
Slater, Barnaby
Zebger, Ingo
Hofmann, Stephan
Fontecilla‐Camps, Juan C.
Park, Chan Beum
Reisner, Erwin
description Hydrogenases (H2ases) are benchmark electrocatalysts for H2 production, both in biology and (photo)catalysis in vitro. We report the tailoring of a p‐type Si photocathode for optimal loading and wiring of H2ase through the introduction of a hierarchical inverse opal (IO) TiO2 interlayer. This proton‐reducing Si|IO‐TiO2|H2ase photocathode is capable of driving overall water splitting in combination with a photoanode. We demonstrate unassisted (bias‐free) water splitting by wiring Si|IO‐TiO2|H2ase to a modified BiVO4 photoanode in a photoelectrochemical (PEC) cell during several hours of irradiation. Connecting the Si|IO‐TiO2|H2ase to a photosystem II (PSII) photoanode provides proof of concept for an engineered Z‐scheme that replaces the non‐complementary, natural light absorber photosystem I with a complementary abiotic silicon photocathode. Halbkünstliches Z‐Schema: Eine Photokathode mit hoher Hydrogenase‐Beladung auf p‐Silicium wurde zur Wasserspaltung mit einer BiVO4‐Photoanode gekoppelt. Kombination der Hydrogenase‐Photokathode mit einer Photosystem II‐Photoanode ermöglicht die Wasserspaltung in Tandemzellen mit einem modifizierten Z‐Schema zur verbesserten Solarenergienutzung.
doi_str_mv 10.1002/ange.201805027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2084285636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084285636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2027-4aa7659519b1c6a27a9ea61a50f6cb79ca877e2c06c376a2c21722d389a224113</originalsourceid><addsrcrecordid>eNqFkEFPAjEQRhujiYhePTfxvNh2d9vdIyEoJERNwOitGbrDsqRssS0h_HuXYPToaQ7z3jeTj5B7zgacMfEIbY0DwXjBcibUBenxXPAkVbm6JD3GsiwpRFZek5sQNowxKVTZI59zZ8HTD4jo6XxnmxibtqaHJq4p0Mmx8q7GFgLSaRux9h1X0aalb2sXHVo00Tuzxm1jwNIFtBVu6QitDbfkagU24N3P7JP3p_FiNElmr8_T0XCWGNF9mWQASuZlzsslNxKEghJBcsjZSpqlKg0USqEwTJpUdXsjuBKiSosShMg4T_vk4Zy78-5rjyHqjdv7tjupBSsyUeQylR01OFPGuxA8rvTON1vwR82ZPrWnT-3p3_Y6oTwLh8bi8R9aD1-ex3_uN1TYcyk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084285636</pqid></control><display><type>article</type><title>Solar Water Splitting with a Hydrogenase Integrated in Photoelectrochemical Tandem Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Nam, Dong Heon ; Zhang, Jenny Z. ; Andrei, Virgil ; Kornienko, Nikolay ; Heidary, Nina ; Wagner, Andreas ; Nakanishi, Kenichi ; Sokol, Katarzyna P. ; Slater, Barnaby ; Zebger, Ingo ; Hofmann, Stephan ; Fontecilla‐Camps, Juan C. ; Park, Chan Beum ; Reisner, Erwin</creator><creatorcontrib>Nam, Dong Heon ; Zhang, Jenny Z. ; Andrei, Virgil ; Kornienko, Nikolay ; Heidary, Nina ; Wagner, Andreas ; Nakanishi, Kenichi ; Sokol, Katarzyna P. ; Slater, Barnaby ; Zebger, Ingo ; Hofmann, Stephan ; Fontecilla‐Camps, Juan C. ; Park, Chan Beum ; Reisner, Erwin</creatorcontrib><description>Hydrogenases (H2ases) are benchmark electrocatalysts for H2 production, both in biology and (photo)catalysis in vitro. We report the tailoring of a p‐type Si photocathode for optimal loading and wiring of H2ase through the introduction of a hierarchical inverse opal (IO) TiO2 interlayer. This proton‐reducing Si|IO‐TiO2|H2ase photocathode is capable of driving overall water splitting in combination with a photoanode. We demonstrate unassisted (bias‐free) water splitting by wiring Si|IO‐TiO2|H2ase to a modified BiVO4 photoanode in a photoelectrochemical (PEC) cell during several hours of irradiation. Connecting the Si|IO‐TiO2|H2ase to a photosystem II (PSII) photoanode provides proof of concept for an engineered Z‐scheme that replaces the non‐complementary, natural light absorber photosystem I with a complementary abiotic silicon photocathode. Halbkünstliches Z‐Schema: Eine Photokathode mit hoher Hydrogenase‐Beladung auf p‐Silicium wurde zur Wasserspaltung mit einer BiVO4‐Photoanode gekoppelt. Kombination der Hydrogenase‐Photokathode mit einer Photosystem II‐Photoanode ermöglicht die Wasserspaltung in Tandemzellen mit einem modifizierten Z‐Schema zur verbesserten Solarenergienutzung.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.201805027</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Catalysis ; Chemistry ; Electrocatalysts ; Hydrogen production ; Hydrogenase ; Interlayers ; Irradiation ; Photocathodes ; Photoelektrochemie ; Photosynthese ; Photosystem I ; Photosystem II ; Radiation ; Silicium ; Silicon ; Splitting ; Titanium dioxide ; Wasserspaltung ; Water splitting ; Wiring</subject><ispartof>Angewandte Chemie, 2018-08, Vol.130 (33), p.10755-10759</ispartof><rights>2018 The Authors. Published by Wiley-VCH Verlag GmbH &amp; Co. KGaA.</rights><rights>2018 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2027-4aa7659519b1c6a27a9ea61a50f6cb79ca877e2c06c376a2c21722d389a224113</citedby><cites>FETCH-LOGICAL-c2027-4aa7659519b1c6a27a9ea61a50f6cb79ca877e2c06c376a2c21722d389a224113</cites><orcidid>0000-0002-7781-1616 ; 0000-0003-4407-5621 ; 0000-0002-6914-4841 ; 0000-0001-8631-8885 ; 0000-0001-6375-1459</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.201805027$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.201805027$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Nam, Dong Heon</creatorcontrib><creatorcontrib>Zhang, Jenny Z.</creatorcontrib><creatorcontrib>Andrei, Virgil</creatorcontrib><creatorcontrib>Kornienko, Nikolay</creatorcontrib><creatorcontrib>Heidary, Nina</creatorcontrib><creatorcontrib>Wagner, Andreas</creatorcontrib><creatorcontrib>Nakanishi, Kenichi</creatorcontrib><creatorcontrib>Sokol, Katarzyna P.</creatorcontrib><creatorcontrib>Slater, Barnaby</creatorcontrib><creatorcontrib>Zebger, Ingo</creatorcontrib><creatorcontrib>Hofmann, Stephan</creatorcontrib><creatorcontrib>Fontecilla‐Camps, Juan C.</creatorcontrib><creatorcontrib>Park, Chan Beum</creatorcontrib><creatorcontrib>Reisner, Erwin</creatorcontrib><title>Solar Water Splitting with a Hydrogenase Integrated in Photoelectrochemical Tandem Cells</title><title>Angewandte Chemie</title><description>Hydrogenases (H2ases) are benchmark electrocatalysts for H2 production, both in biology and (photo)catalysis in vitro. We report the tailoring of a p‐type Si photocathode for optimal loading and wiring of H2ase through the introduction of a hierarchical inverse opal (IO) TiO2 interlayer. This proton‐reducing Si|IO‐TiO2|H2ase photocathode is capable of driving overall water splitting in combination with a photoanode. We demonstrate unassisted (bias‐free) water splitting by wiring Si|IO‐TiO2|H2ase to a modified BiVO4 photoanode in a photoelectrochemical (PEC) cell during several hours of irradiation. Connecting the Si|IO‐TiO2|H2ase to a photosystem II (PSII) photoanode provides proof of concept for an engineered Z‐scheme that replaces the non‐complementary, natural light absorber photosystem I with a complementary abiotic silicon photocathode. Halbkünstliches Z‐Schema: Eine Photokathode mit hoher Hydrogenase‐Beladung auf p‐Silicium wurde zur Wasserspaltung mit einer BiVO4‐Photoanode gekoppelt. Kombination der Hydrogenase‐Photokathode mit einer Photosystem II‐Photoanode ermöglicht die Wasserspaltung in Tandemzellen mit einem modifizierten Z‐Schema zur verbesserten Solarenergienutzung.</description><subject>Catalysis</subject><subject>Chemistry</subject><subject>Electrocatalysts</subject><subject>Hydrogen production</subject><subject>Hydrogenase</subject><subject>Interlayers</subject><subject>Irradiation</subject><subject>Photocathodes</subject><subject>Photoelektrochemie</subject><subject>Photosynthese</subject><subject>Photosystem I</subject><subject>Photosystem II</subject><subject>Radiation</subject><subject>Silicium</subject><subject>Silicon</subject><subject>Splitting</subject><subject>Titanium dioxide</subject><subject>Wasserspaltung</subject><subject>Water splitting</subject><subject>Wiring</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkEFPAjEQRhujiYhePTfxvNh2d9vdIyEoJERNwOitGbrDsqRssS0h_HuXYPToaQ7z3jeTj5B7zgacMfEIbY0DwXjBcibUBenxXPAkVbm6JD3GsiwpRFZek5sQNowxKVTZI59zZ8HTD4jo6XxnmxibtqaHJq4p0Mmx8q7GFgLSaRux9h1X0aalb2sXHVo00Tuzxm1jwNIFtBVu6QitDbfkagU24N3P7JP3p_FiNElmr8_T0XCWGNF9mWQASuZlzsslNxKEghJBcsjZSpqlKg0USqEwTJpUdXsjuBKiSosShMg4T_vk4Zy78-5rjyHqjdv7tjupBSsyUeQylR01OFPGuxA8rvTON1vwR82ZPrWnT-3p3_Y6oTwLh8bi8R9aD1-ex3_uN1TYcyk</recordid><startdate>20180813</startdate><enddate>20180813</enddate><creator>Nam, Dong Heon</creator><creator>Zhang, Jenny Z.</creator><creator>Andrei, Virgil</creator><creator>Kornienko, Nikolay</creator><creator>Heidary, Nina</creator><creator>Wagner, Andreas</creator><creator>Nakanishi, Kenichi</creator><creator>Sokol, Katarzyna P.</creator><creator>Slater, Barnaby</creator><creator>Zebger, Ingo</creator><creator>Hofmann, Stephan</creator><creator>Fontecilla‐Camps, Juan C.</creator><creator>Park, Chan Beum</creator><creator>Reisner, Erwin</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7781-1616</orcidid><orcidid>https://orcid.org/0000-0003-4407-5621</orcidid><orcidid>https://orcid.org/0000-0002-6914-4841</orcidid><orcidid>https://orcid.org/0000-0001-8631-8885</orcidid><orcidid>https://orcid.org/0000-0001-6375-1459</orcidid></search><sort><creationdate>20180813</creationdate><title>Solar Water Splitting with a Hydrogenase Integrated in Photoelectrochemical Tandem Cells</title><author>Nam, Dong Heon ; Zhang, Jenny Z. ; Andrei, Virgil ; Kornienko, Nikolay ; Heidary, Nina ; Wagner, Andreas ; Nakanishi, Kenichi ; Sokol, Katarzyna P. ; Slater, Barnaby ; Zebger, Ingo ; Hofmann, Stephan ; Fontecilla‐Camps, Juan C. ; Park, Chan Beum ; Reisner, Erwin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2027-4aa7659519b1c6a27a9ea61a50f6cb79ca877e2c06c376a2c21722d389a224113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Catalysis</topic><topic>Chemistry</topic><topic>Electrocatalysts</topic><topic>Hydrogen production</topic><topic>Hydrogenase</topic><topic>Interlayers</topic><topic>Irradiation</topic><topic>Photocathodes</topic><topic>Photoelektrochemie</topic><topic>Photosynthese</topic><topic>Photosystem I</topic><topic>Photosystem II</topic><topic>Radiation</topic><topic>Silicium</topic><topic>Silicon</topic><topic>Splitting</topic><topic>Titanium dioxide</topic><topic>Wasserspaltung</topic><topic>Water splitting</topic><topic>Wiring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nam, Dong Heon</creatorcontrib><creatorcontrib>Zhang, Jenny Z.</creatorcontrib><creatorcontrib>Andrei, Virgil</creatorcontrib><creatorcontrib>Kornienko, Nikolay</creatorcontrib><creatorcontrib>Heidary, Nina</creatorcontrib><creatorcontrib>Wagner, Andreas</creatorcontrib><creatorcontrib>Nakanishi, Kenichi</creatorcontrib><creatorcontrib>Sokol, Katarzyna P.</creatorcontrib><creatorcontrib>Slater, Barnaby</creatorcontrib><creatorcontrib>Zebger, Ingo</creatorcontrib><creatorcontrib>Hofmann, Stephan</creatorcontrib><creatorcontrib>Fontecilla‐Camps, Juan C.</creatorcontrib><creatorcontrib>Park, Chan Beum</creatorcontrib><creatorcontrib>Reisner, Erwin</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nam, Dong Heon</au><au>Zhang, Jenny Z.</au><au>Andrei, Virgil</au><au>Kornienko, Nikolay</au><au>Heidary, Nina</au><au>Wagner, Andreas</au><au>Nakanishi, Kenichi</au><au>Sokol, Katarzyna P.</au><au>Slater, Barnaby</au><au>Zebger, Ingo</au><au>Hofmann, Stephan</au><au>Fontecilla‐Camps, Juan C.</au><au>Park, Chan Beum</au><au>Reisner, Erwin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solar Water Splitting with a Hydrogenase Integrated in Photoelectrochemical Tandem Cells</atitle><jtitle>Angewandte Chemie</jtitle><date>2018-08-13</date><risdate>2018</risdate><volume>130</volume><issue>33</issue><spage>10755</spage><epage>10759</epage><pages>10755-10759</pages><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Hydrogenases (H2ases) are benchmark electrocatalysts for H2 production, both in biology and (photo)catalysis in vitro. We report the tailoring of a p‐type Si photocathode for optimal loading and wiring of H2ase through the introduction of a hierarchical inverse opal (IO) TiO2 interlayer. This proton‐reducing Si|IO‐TiO2|H2ase photocathode is capable of driving overall water splitting in combination with a photoanode. We demonstrate unassisted (bias‐free) water splitting by wiring Si|IO‐TiO2|H2ase to a modified BiVO4 photoanode in a photoelectrochemical (PEC) cell during several hours of irradiation. Connecting the Si|IO‐TiO2|H2ase to a photosystem II (PSII) photoanode provides proof of concept for an engineered Z‐scheme that replaces the non‐complementary, natural light absorber photosystem I with a complementary abiotic silicon photocathode. Halbkünstliches Z‐Schema: Eine Photokathode mit hoher Hydrogenase‐Beladung auf p‐Silicium wurde zur Wasserspaltung mit einer BiVO4‐Photoanode gekoppelt. Kombination der Hydrogenase‐Photokathode mit einer Photosystem II‐Photoanode ermöglicht die Wasserspaltung in Tandemzellen mit einem modifizierten Z‐Schema zur verbesserten Solarenergienutzung.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.201805027</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7781-1616</orcidid><orcidid>https://orcid.org/0000-0003-4407-5621</orcidid><orcidid>https://orcid.org/0000-0002-6914-4841</orcidid><orcidid>https://orcid.org/0000-0001-8631-8885</orcidid><orcidid>https://orcid.org/0000-0001-6375-1459</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2018-08, Vol.130 (33), p.10755-10759
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_2084285636
source Wiley Online Library Journals Frontfile Complete
subjects Catalysis
Chemistry
Electrocatalysts
Hydrogen production
Hydrogenase
Interlayers
Irradiation
Photocathodes
Photoelektrochemie
Photosynthese
Photosystem I
Photosystem II
Radiation
Silicium
Silicon
Splitting
Titanium dioxide
Wasserspaltung
Water splitting
Wiring
title Solar Water Splitting with a Hydrogenase Integrated in Photoelectrochemical Tandem Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T13%3A26%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solar%20Water%20Splitting%20with%20a%20Hydrogenase%20Integrated%20in%20Photoelectrochemical%20Tandem%20Cells&rft.jtitle=Angewandte%20Chemie&rft.au=Nam,%20Dong%20Heon&rft.date=2018-08-13&rft.volume=130&rft.issue=33&rft.spage=10755&rft.epage=10759&rft.pages=10755-10759&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.201805027&rft_dat=%3Cproquest_cross%3E2084285636%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084285636&rft_id=info:pmid/&rfr_iscdi=true