Solar Water Splitting with a Hydrogenase Integrated in Photoelectrochemical Tandem Cells
Hydrogenases (H2ases) are benchmark electrocatalysts for H2 production, both in biology and (photo)catalysis in vitro. We report the tailoring of a p‐type Si photocathode for optimal loading and wiring of H2ase through the introduction of a hierarchical inverse opal (IO) TiO2 interlayer. This proton...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie 2018-08, Vol.130 (33), p.10755-10759 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10759 |
---|---|
container_issue | 33 |
container_start_page | 10755 |
container_title | Angewandte Chemie |
container_volume | 130 |
creator | Nam, Dong Heon Zhang, Jenny Z. Andrei, Virgil Kornienko, Nikolay Heidary, Nina Wagner, Andreas Nakanishi, Kenichi Sokol, Katarzyna P. Slater, Barnaby Zebger, Ingo Hofmann, Stephan Fontecilla‐Camps, Juan C. Park, Chan Beum Reisner, Erwin |
description | Hydrogenases (H2ases) are benchmark electrocatalysts for H2 production, both in biology and (photo)catalysis in vitro. We report the tailoring of a p‐type Si photocathode for optimal loading and wiring of H2ase through the introduction of a hierarchical inverse opal (IO) TiO2 interlayer. This proton‐reducing Si|IO‐TiO2|H2ase photocathode is capable of driving overall water splitting in combination with a photoanode. We demonstrate unassisted (bias‐free) water splitting by wiring Si|IO‐TiO2|H2ase to a modified BiVO4 photoanode in a photoelectrochemical (PEC) cell during several hours of irradiation. Connecting the Si|IO‐TiO2|H2ase to a photosystem II (PSII) photoanode provides proof of concept for an engineered Z‐scheme that replaces the non‐complementary, natural light absorber photosystem I with a complementary abiotic silicon photocathode.
Halbkünstliches Z‐Schema: Eine Photokathode mit hoher Hydrogenase‐Beladung auf p‐Silicium wurde zur Wasserspaltung mit einer BiVO4‐Photoanode gekoppelt. Kombination der Hydrogenase‐Photokathode mit einer Photosystem II‐Photoanode ermöglicht die Wasserspaltung in Tandemzellen mit einem modifizierten Z‐Schema zur verbesserten Solarenergienutzung. |
doi_str_mv | 10.1002/ange.201805027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2084285636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084285636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2027-4aa7659519b1c6a27a9ea61a50f6cb79ca877e2c06c376a2c21722d389a224113</originalsourceid><addsrcrecordid>eNqFkEFPAjEQRhujiYhePTfxvNh2d9vdIyEoJERNwOitGbrDsqRssS0h_HuXYPToaQ7z3jeTj5B7zgacMfEIbY0DwXjBcibUBenxXPAkVbm6JD3GsiwpRFZek5sQNowxKVTZI59zZ8HTD4jo6XxnmxibtqaHJq4p0Mmx8q7GFgLSaRux9h1X0aalb2sXHVo00Tuzxm1jwNIFtBVu6QitDbfkagU24N3P7JP3p_FiNElmr8_T0XCWGNF9mWQASuZlzsslNxKEghJBcsjZSpqlKg0USqEwTJpUdXsjuBKiSosShMg4T_vk4Zy78-5rjyHqjdv7tjupBSsyUeQylR01OFPGuxA8rvTON1vwR82ZPrWnT-3p3_Y6oTwLh8bi8R9aD1-ex3_uN1TYcyk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084285636</pqid></control><display><type>article</type><title>Solar Water Splitting with a Hydrogenase Integrated in Photoelectrochemical Tandem Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Nam, Dong Heon ; Zhang, Jenny Z. ; Andrei, Virgil ; Kornienko, Nikolay ; Heidary, Nina ; Wagner, Andreas ; Nakanishi, Kenichi ; Sokol, Katarzyna P. ; Slater, Barnaby ; Zebger, Ingo ; Hofmann, Stephan ; Fontecilla‐Camps, Juan C. ; Park, Chan Beum ; Reisner, Erwin</creator><creatorcontrib>Nam, Dong Heon ; Zhang, Jenny Z. ; Andrei, Virgil ; Kornienko, Nikolay ; Heidary, Nina ; Wagner, Andreas ; Nakanishi, Kenichi ; Sokol, Katarzyna P. ; Slater, Barnaby ; Zebger, Ingo ; Hofmann, Stephan ; Fontecilla‐Camps, Juan C. ; Park, Chan Beum ; Reisner, Erwin</creatorcontrib><description>Hydrogenases (H2ases) are benchmark electrocatalysts for H2 production, both in biology and (photo)catalysis in vitro. We report the tailoring of a p‐type Si photocathode for optimal loading and wiring of H2ase through the introduction of a hierarchical inverse opal (IO) TiO2 interlayer. This proton‐reducing Si|IO‐TiO2|H2ase photocathode is capable of driving overall water splitting in combination with a photoanode. We demonstrate unassisted (bias‐free) water splitting by wiring Si|IO‐TiO2|H2ase to a modified BiVO4 photoanode in a photoelectrochemical (PEC) cell during several hours of irradiation. Connecting the Si|IO‐TiO2|H2ase to a photosystem II (PSII) photoanode provides proof of concept for an engineered Z‐scheme that replaces the non‐complementary, natural light absorber photosystem I with a complementary abiotic silicon photocathode.
Halbkünstliches Z‐Schema: Eine Photokathode mit hoher Hydrogenase‐Beladung auf p‐Silicium wurde zur Wasserspaltung mit einer BiVO4‐Photoanode gekoppelt. Kombination der Hydrogenase‐Photokathode mit einer Photosystem II‐Photoanode ermöglicht die Wasserspaltung in Tandemzellen mit einem modifizierten Z‐Schema zur verbesserten Solarenergienutzung.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.201805027</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Catalysis ; Chemistry ; Electrocatalysts ; Hydrogen production ; Hydrogenase ; Interlayers ; Irradiation ; Photocathodes ; Photoelektrochemie ; Photosynthese ; Photosystem I ; Photosystem II ; Radiation ; Silicium ; Silicon ; Splitting ; Titanium dioxide ; Wasserspaltung ; Water splitting ; Wiring</subject><ispartof>Angewandte Chemie, 2018-08, Vol.130 (33), p.10755-10759</ispartof><rights>2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.</rights><rights>2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2027-4aa7659519b1c6a27a9ea61a50f6cb79ca877e2c06c376a2c21722d389a224113</citedby><cites>FETCH-LOGICAL-c2027-4aa7659519b1c6a27a9ea61a50f6cb79ca877e2c06c376a2c21722d389a224113</cites><orcidid>0000-0002-7781-1616 ; 0000-0003-4407-5621 ; 0000-0002-6914-4841 ; 0000-0001-8631-8885 ; 0000-0001-6375-1459</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.201805027$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.201805027$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Nam, Dong Heon</creatorcontrib><creatorcontrib>Zhang, Jenny Z.</creatorcontrib><creatorcontrib>Andrei, Virgil</creatorcontrib><creatorcontrib>Kornienko, Nikolay</creatorcontrib><creatorcontrib>Heidary, Nina</creatorcontrib><creatorcontrib>Wagner, Andreas</creatorcontrib><creatorcontrib>Nakanishi, Kenichi</creatorcontrib><creatorcontrib>Sokol, Katarzyna P.</creatorcontrib><creatorcontrib>Slater, Barnaby</creatorcontrib><creatorcontrib>Zebger, Ingo</creatorcontrib><creatorcontrib>Hofmann, Stephan</creatorcontrib><creatorcontrib>Fontecilla‐Camps, Juan C.</creatorcontrib><creatorcontrib>Park, Chan Beum</creatorcontrib><creatorcontrib>Reisner, Erwin</creatorcontrib><title>Solar Water Splitting with a Hydrogenase Integrated in Photoelectrochemical Tandem Cells</title><title>Angewandte Chemie</title><description>Hydrogenases (H2ases) are benchmark electrocatalysts for H2 production, both in biology and (photo)catalysis in vitro. We report the tailoring of a p‐type Si photocathode for optimal loading and wiring of H2ase through the introduction of a hierarchical inverse opal (IO) TiO2 interlayer. This proton‐reducing Si|IO‐TiO2|H2ase photocathode is capable of driving overall water splitting in combination with a photoanode. We demonstrate unassisted (bias‐free) water splitting by wiring Si|IO‐TiO2|H2ase to a modified BiVO4 photoanode in a photoelectrochemical (PEC) cell during several hours of irradiation. Connecting the Si|IO‐TiO2|H2ase to a photosystem II (PSII) photoanode provides proof of concept for an engineered Z‐scheme that replaces the non‐complementary, natural light absorber photosystem I with a complementary abiotic silicon photocathode.
Halbkünstliches Z‐Schema: Eine Photokathode mit hoher Hydrogenase‐Beladung auf p‐Silicium wurde zur Wasserspaltung mit einer BiVO4‐Photoanode gekoppelt. Kombination der Hydrogenase‐Photokathode mit einer Photosystem II‐Photoanode ermöglicht die Wasserspaltung in Tandemzellen mit einem modifizierten Z‐Schema zur verbesserten Solarenergienutzung.</description><subject>Catalysis</subject><subject>Chemistry</subject><subject>Electrocatalysts</subject><subject>Hydrogen production</subject><subject>Hydrogenase</subject><subject>Interlayers</subject><subject>Irradiation</subject><subject>Photocathodes</subject><subject>Photoelektrochemie</subject><subject>Photosynthese</subject><subject>Photosystem I</subject><subject>Photosystem II</subject><subject>Radiation</subject><subject>Silicium</subject><subject>Silicon</subject><subject>Splitting</subject><subject>Titanium dioxide</subject><subject>Wasserspaltung</subject><subject>Water splitting</subject><subject>Wiring</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkEFPAjEQRhujiYhePTfxvNh2d9vdIyEoJERNwOitGbrDsqRssS0h_HuXYPToaQ7z3jeTj5B7zgacMfEIbY0DwXjBcibUBenxXPAkVbm6JD3GsiwpRFZek5sQNowxKVTZI59zZ8HTD4jo6XxnmxibtqaHJq4p0Mmx8q7GFgLSaRux9h1X0aalb2sXHVo00Tuzxm1jwNIFtBVu6QitDbfkagU24N3P7JP3p_FiNElmr8_T0XCWGNF9mWQASuZlzsslNxKEghJBcsjZSpqlKg0USqEwTJpUdXsjuBKiSosShMg4T_vk4Zy78-5rjyHqjdv7tjupBSsyUeQylR01OFPGuxA8rvTON1vwR82ZPrWnT-3p3_Y6oTwLh8bi8R9aD1-ex3_uN1TYcyk</recordid><startdate>20180813</startdate><enddate>20180813</enddate><creator>Nam, Dong Heon</creator><creator>Zhang, Jenny Z.</creator><creator>Andrei, Virgil</creator><creator>Kornienko, Nikolay</creator><creator>Heidary, Nina</creator><creator>Wagner, Andreas</creator><creator>Nakanishi, Kenichi</creator><creator>Sokol, Katarzyna P.</creator><creator>Slater, Barnaby</creator><creator>Zebger, Ingo</creator><creator>Hofmann, Stephan</creator><creator>Fontecilla‐Camps, Juan C.</creator><creator>Park, Chan Beum</creator><creator>Reisner, Erwin</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7781-1616</orcidid><orcidid>https://orcid.org/0000-0003-4407-5621</orcidid><orcidid>https://orcid.org/0000-0002-6914-4841</orcidid><orcidid>https://orcid.org/0000-0001-8631-8885</orcidid><orcidid>https://orcid.org/0000-0001-6375-1459</orcidid></search><sort><creationdate>20180813</creationdate><title>Solar Water Splitting with a Hydrogenase Integrated in Photoelectrochemical Tandem Cells</title><author>Nam, Dong Heon ; Zhang, Jenny Z. ; Andrei, Virgil ; Kornienko, Nikolay ; Heidary, Nina ; Wagner, Andreas ; Nakanishi, Kenichi ; Sokol, Katarzyna P. ; Slater, Barnaby ; Zebger, Ingo ; Hofmann, Stephan ; Fontecilla‐Camps, Juan C. ; Park, Chan Beum ; Reisner, Erwin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2027-4aa7659519b1c6a27a9ea61a50f6cb79ca877e2c06c376a2c21722d389a224113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Catalysis</topic><topic>Chemistry</topic><topic>Electrocatalysts</topic><topic>Hydrogen production</topic><topic>Hydrogenase</topic><topic>Interlayers</topic><topic>Irradiation</topic><topic>Photocathodes</topic><topic>Photoelektrochemie</topic><topic>Photosynthese</topic><topic>Photosystem I</topic><topic>Photosystem II</topic><topic>Radiation</topic><topic>Silicium</topic><topic>Silicon</topic><topic>Splitting</topic><topic>Titanium dioxide</topic><topic>Wasserspaltung</topic><topic>Water splitting</topic><topic>Wiring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nam, Dong Heon</creatorcontrib><creatorcontrib>Zhang, Jenny Z.</creatorcontrib><creatorcontrib>Andrei, Virgil</creatorcontrib><creatorcontrib>Kornienko, Nikolay</creatorcontrib><creatorcontrib>Heidary, Nina</creatorcontrib><creatorcontrib>Wagner, Andreas</creatorcontrib><creatorcontrib>Nakanishi, Kenichi</creatorcontrib><creatorcontrib>Sokol, Katarzyna P.</creatorcontrib><creatorcontrib>Slater, Barnaby</creatorcontrib><creatorcontrib>Zebger, Ingo</creatorcontrib><creatorcontrib>Hofmann, Stephan</creatorcontrib><creatorcontrib>Fontecilla‐Camps, Juan C.</creatorcontrib><creatorcontrib>Park, Chan Beum</creatorcontrib><creatorcontrib>Reisner, Erwin</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nam, Dong Heon</au><au>Zhang, Jenny Z.</au><au>Andrei, Virgil</au><au>Kornienko, Nikolay</au><au>Heidary, Nina</au><au>Wagner, Andreas</au><au>Nakanishi, Kenichi</au><au>Sokol, Katarzyna P.</au><au>Slater, Barnaby</au><au>Zebger, Ingo</au><au>Hofmann, Stephan</au><au>Fontecilla‐Camps, Juan C.</au><au>Park, Chan Beum</au><au>Reisner, Erwin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solar Water Splitting with a Hydrogenase Integrated in Photoelectrochemical Tandem Cells</atitle><jtitle>Angewandte Chemie</jtitle><date>2018-08-13</date><risdate>2018</risdate><volume>130</volume><issue>33</issue><spage>10755</spage><epage>10759</epage><pages>10755-10759</pages><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Hydrogenases (H2ases) are benchmark electrocatalysts for H2 production, both in biology and (photo)catalysis in vitro. We report the tailoring of a p‐type Si photocathode for optimal loading and wiring of H2ase through the introduction of a hierarchical inverse opal (IO) TiO2 interlayer. This proton‐reducing Si|IO‐TiO2|H2ase photocathode is capable of driving overall water splitting in combination with a photoanode. We demonstrate unassisted (bias‐free) water splitting by wiring Si|IO‐TiO2|H2ase to a modified BiVO4 photoanode in a photoelectrochemical (PEC) cell during several hours of irradiation. Connecting the Si|IO‐TiO2|H2ase to a photosystem II (PSII) photoanode provides proof of concept for an engineered Z‐scheme that replaces the non‐complementary, natural light absorber photosystem I with a complementary abiotic silicon photocathode.
Halbkünstliches Z‐Schema: Eine Photokathode mit hoher Hydrogenase‐Beladung auf p‐Silicium wurde zur Wasserspaltung mit einer BiVO4‐Photoanode gekoppelt. Kombination der Hydrogenase‐Photokathode mit einer Photosystem II‐Photoanode ermöglicht die Wasserspaltung in Tandemzellen mit einem modifizierten Z‐Schema zur verbesserten Solarenergienutzung.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.201805027</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7781-1616</orcidid><orcidid>https://orcid.org/0000-0003-4407-5621</orcidid><orcidid>https://orcid.org/0000-0002-6914-4841</orcidid><orcidid>https://orcid.org/0000-0001-8631-8885</orcidid><orcidid>https://orcid.org/0000-0001-6375-1459</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-8249 |
ispartof | Angewandte Chemie, 2018-08, Vol.130 (33), p.10755-10759 |
issn | 0044-8249 1521-3757 |
language | eng |
recordid | cdi_proquest_journals_2084285636 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Catalysis Chemistry Electrocatalysts Hydrogen production Hydrogenase Interlayers Irradiation Photocathodes Photoelektrochemie Photosynthese Photosystem I Photosystem II Radiation Silicium Silicon Splitting Titanium dioxide Wasserspaltung Water splitting Wiring |
title | Solar Water Splitting with a Hydrogenase Integrated in Photoelectrochemical Tandem Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T13%3A26%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solar%20Water%20Splitting%20with%20a%20Hydrogenase%20Integrated%20in%20Photoelectrochemical%20Tandem%20Cells&rft.jtitle=Angewandte%20Chemie&rft.au=Nam,%20Dong%20Heon&rft.date=2018-08-13&rft.volume=130&rft.issue=33&rft.spage=10755&rft.epage=10759&rft.pages=10755-10759&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.201805027&rft_dat=%3Cproquest_cross%3E2084285636%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084285636&rft_id=info:pmid/&rfr_iscdi=true |