Convolution spline approximations for time domain boundary integral equations

We introduce a new "convolution spline" temporal approximation of time domain boundary integral equations (TDBIEs). It shares some properties of convolution quadrature (CQ), but instead of being based on an underlying ODE solver the approximation is explicitly constructed in terms of compa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2014-05
Hauptverfasser: Davies, Penny J, Duncan, Dugald B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Davies, Penny J
Duncan, Dugald B
description We introduce a new "convolution spline" temporal approximation of time domain boundary integral equations (TDBIEs). It shares some properties of convolution quadrature (CQ), but instead of being based on an underlying ODE solver the approximation is explicitly constructed in terms of compactly supported basis functions. This results in sparse system matrices and makes it computationally more efficient than using the linear multistep version of CQ for TDBIE time-stepping. We use a Volterra integral equation (VIE) to illustrate the derivation of this new approach: at time step \(t_n = n h\) the VIE solution is approximated in a backwards-in-time manner in terms of basis functions \(\phi_j\) by \(u(t_n-t) \approx \sum_{j=0}^n u_{n-j}\,\phi_j(t/h)\) for \(t \in [0,t_n]\). We show that using isogeometric B-splines of degree \(m\ge 1\) on \([0,\infty)\) in this framework gives a second order accurate scheme, but cubic splines with the parabolic runout conditions at \(t=0\) are fourth order accurate. We establish a methodology for the stability analysis of VIEs and demonstrate that the new methods are stable for non-smooth kernels which are related to convergence analysis for TDBIEs, including the case of a Bessel function kernel oscillating at frequency \(O(1/h)\). Numerical results for VIEs and for TDBIE problems on both open and closed surfaces confirm the theoretical predictions.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2084235321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084235321</sourcerecordid><originalsourceid>FETCH-proquest_journals_20842353213</originalsourceid><addsrcrecordid>eNqNjs0KwjAQhIMgWLTvsOC5kG6sei-KF2_eJdJUUtLdNj-ib29FH8DTwDcfw8xEhkqVxX6DuBB5CJ2UErc7rCqViXPN9GCXomWCMDhLBvQweH7aXn9ggJY9RNsbaLjXluDGiRrtX2ApmrvXDsyYvu5KzFvtgsl_uRTr4-FSn4ppcEwmxGvHydNUXVFOh1SlsFT_WW9T-z84</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084235321</pqid></control><display><type>article</type><title>Convolution spline approximations for time domain boundary integral equations</title><source>Free E- Journals</source><creator>Davies, Penny J ; Duncan, Dugald B</creator><creatorcontrib>Davies, Penny J ; Duncan, Dugald B</creatorcontrib><description>We introduce a new "convolution spline" temporal approximation of time domain boundary integral equations (TDBIEs). It shares some properties of convolution quadrature (CQ), but instead of being based on an underlying ODE solver the approximation is explicitly constructed in terms of compactly supported basis functions. This results in sparse system matrices and makes it computationally more efficient than using the linear multistep version of CQ for TDBIE time-stepping. We use a Volterra integral equation (VIE) to illustrate the derivation of this new approach: at time step \(t_n = n h\) the VIE solution is approximated in a backwards-in-time manner in terms of basis functions \(\phi_j\) by \(u(t_n-t) \approx \sum_{j=0}^n u_{n-j}\,\phi_j(t/h)\) for \(t \in [0,t_n]\). We show that using isogeometric B-splines of degree \(m\ge 1\) on \([0,\infty)\) in this framework gives a second order accurate scheme, but cubic splines with the parabolic runout conditions at \(t=0\) are fourth order accurate. We establish a methodology for the stability analysis of VIEs and demonstrate that the new methods are stable for non-smooth kernels which are related to convergence analysis for TDBIEs, including the case of a Bessel function kernel oscillating at frequency \(O(1/h)\). Numerical results for VIEs and for TDBIE problems on both open and closed surfaces confirm the theoretical predictions.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Approximation ; Basis functions ; Bessel functions ; Boundary integral method ; Convolution ; Integral equations ; Kernels ; Mathematical analysis ; Matrix methods ; Splines ; Stability analysis ; Time domain analysis ; Volterra integral equations</subject><ispartof>arXiv.org, 2014-05</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Davies, Penny J</creatorcontrib><creatorcontrib>Duncan, Dugald B</creatorcontrib><title>Convolution spline approximations for time domain boundary integral equations</title><title>arXiv.org</title><description>We introduce a new "convolution spline" temporal approximation of time domain boundary integral equations (TDBIEs). It shares some properties of convolution quadrature (CQ), but instead of being based on an underlying ODE solver the approximation is explicitly constructed in terms of compactly supported basis functions. This results in sparse system matrices and makes it computationally more efficient than using the linear multistep version of CQ for TDBIE time-stepping. We use a Volterra integral equation (VIE) to illustrate the derivation of this new approach: at time step \(t_n = n h\) the VIE solution is approximated in a backwards-in-time manner in terms of basis functions \(\phi_j\) by \(u(t_n-t) \approx \sum_{j=0}^n u_{n-j}\,\phi_j(t/h)\) for \(t \in [0,t_n]\). We show that using isogeometric B-splines of degree \(m\ge 1\) on \([0,\infty)\) in this framework gives a second order accurate scheme, but cubic splines with the parabolic runout conditions at \(t=0\) are fourth order accurate. We establish a methodology for the stability analysis of VIEs and demonstrate that the new methods are stable for non-smooth kernels which are related to convergence analysis for TDBIEs, including the case of a Bessel function kernel oscillating at frequency \(O(1/h)\). Numerical results for VIEs and for TDBIE problems on both open and closed surfaces confirm the theoretical predictions.</description><subject>Approximation</subject><subject>Basis functions</subject><subject>Bessel functions</subject><subject>Boundary integral method</subject><subject>Convolution</subject><subject>Integral equations</subject><subject>Kernels</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Splines</subject><subject>Stability analysis</subject><subject>Time domain analysis</subject><subject>Volterra integral equations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjs0KwjAQhIMgWLTvsOC5kG6sei-KF2_eJdJUUtLdNj-ib29FH8DTwDcfw8xEhkqVxX6DuBB5CJ2UErc7rCqViXPN9GCXomWCMDhLBvQweH7aXn9ggJY9RNsbaLjXluDGiRrtX2ApmrvXDsyYvu5KzFvtgsl_uRTr4-FSn4ppcEwmxGvHydNUXVFOh1SlsFT_WW9T-z84</recordid><startdate>20140507</startdate><enddate>20140507</enddate><creator>Davies, Penny J</creator><creator>Duncan, Dugald B</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140507</creationdate><title>Convolution spline approximations for time domain boundary integral equations</title><author>Davies, Penny J ; Duncan, Dugald B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20842353213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximation</topic><topic>Basis functions</topic><topic>Bessel functions</topic><topic>Boundary integral method</topic><topic>Convolution</topic><topic>Integral equations</topic><topic>Kernels</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Splines</topic><topic>Stability analysis</topic><topic>Time domain analysis</topic><topic>Volterra integral equations</topic><toplevel>online_resources</toplevel><creatorcontrib>Davies, Penny J</creatorcontrib><creatorcontrib>Duncan, Dugald B</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davies, Penny J</au><au>Duncan, Dugald B</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Convolution spline approximations for time domain boundary integral equations</atitle><jtitle>arXiv.org</jtitle><date>2014-05-07</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>We introduce a new "convolution spline" temporal approximation of time domain boundary integral equations (TDBIEs). It shares some properties of convolution quadrature (CQ), but instead of being based on an underlying ODE solver the approximation is explicitly constructed in terms of compactly supported basis functions. This results in sparse system matrices and makes it computationally more efficient than using the linear multistep version of CQ for TDBIE time-stepping. We use a Volterra integral equation (VIE) to illustrate the derivation of this new approach: at time step \(t_n = n h\) the VIE solution is approximated in a backwards-in-time manner in terms of basis functions \(\phi_j\) by \(u(t_n-t) \approx \sum_{j=0}^n u_{n-j}\,\phi_j(t/h)\) for \(t \in [0,t_n]\). We show that using isogeometric B-splines of degree \(m\ge 1\) on \([0,\infty)\) in this framework gives a second order accurate scheme, but cubic splines with the parabolic runout conditions at \(t=0\) are fourth order accurate. We establish a methodology for the stability analysis of VIEs and demonstrate that the new methods are stable for non-smooth kernels which are related to convergence analysis for TDBIEs, including the case of a Bessel function kernel oscillating at frequency \(O(1/h)\). Numerical results for VIEs and for TDBIE problems on both open and closed surfaces confirm the theoretical predictions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2014-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2084235321
source Free E- Journals
subjects Approximation
Basis functions
Bessel functions
Boundary integral method
Convolution
Integral equations
Kernels
Mathematical analysis
Matrix methods
Splines
Stability analysis
Time domain analysis
Volterra integral equations
title Convolution spline approximations for time domain boundary integral equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T12%3A08%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Convolution%20spline%20approximations%20for%20time%20domain%20boundary%20integral%20equations&rft.jtitle=arXiv.org&rft.au=Davies,%20Penny%20J&rft.date=2014-05-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2084235321%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084235321&rft_id=info:pmid/&rfr_iscdi=true