Directional Scaling Symmetry of High-symmetry Two-dimensional Lattices

Two-dimensional lattices provide the arena for many physics problems of essential importance, a non-trivial symmetry in such lattices will help to reveal the underlying physics. Whether there is a directional scaling for the 2D lattices is a longstanding puzzle. Here we report the discovery and proo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2014-05
Hauptverfasser: Liao, Longguang, Cao, Zexian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Liao, Longguang
Cao, Zexian
description Two-dimensional lattices provide the arena for many physics problems of essential importance, a non-trivial symmetry in such lattices will help to reveal the underlying physics. Whether there is a directional scaling for the 2D lattices is a longstanding puzzle. Here we report the discovery and proof of directional scaling symmetry for high symmetry 2D lattices, i.e., the square lattice, the equilateral triangular lattice and thus the honeycomb lattice, with the aid of the function , where x is either the platinum number or the silver number , which are related to the 12-fold and 8-fold quasiperiodic structures, respectively. The directions and the corresponding scaling factors for the symmetric scaling transformation are determined. The revealed scaling symmetry may have a bearing on the various physical problems modeled on 2D lattices, and the function adopted here can be used to generate quasiperiodic lattices with enumeration of lattice points. Our result is expected to initiate the search of directional scaling symmetry in more complicated geometries.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2084110450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084110450</sourcerecordid><originalsourceid>FETCH-proquest_journals_20841104503</originalsourceid><addsrcrecordid>eNqNi08LgjAcQEcQJOV3GHQe7I8r75V46KZ3GTptsrnabxJ--4Lq3unB470VSrgQjOQZ5xuUAoyUUn44cilFgoqzCbqNxk_K4qpV1kwDrhbndAwL9j0uzXAj8BP105POOD3B57iqGE2rYYfWvbKg0y-3aF9c6lNJ7sE_Zg2xGf0c3gc0nOYZYzSTVPxXvQDt6juV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084110450</pqid></control><display><type>article</type><title>Directional Scaling Symmetry of High-symmetry Two-dimensional Lattices</title><source>Free E- Journals</source><creator>Liao, Longguang ; Cao, Zexian</creator><creatorcontrib>Liao, Longguang ; Cao, Zexian</creatorcontrib><description>Two-dimensional lattices provide the arena for many physics problems of essential importance, a non-trivial symmetry in such lattices will help to reveal the underlying physics. Whether there is a directional scaling for the 2D lattices is a longstanding puzzle. Here we report the discovery and proof of directional scaling symmetry for high symmetry 2D lattices, i.e., the square lattice, the equilateral triangular lattice and thus the honeycomb lattice, with the aid of the function , where x is either the platinum number or the silver number , which are related to the 12-fold and 8-fold quasiperiodic structures, respectively. The directions and the corresponding scaling factors for the symmetric scaling transformation are determined. The revealed scaling symmetry may have a bearing on the various physical problems modeled on 2D lattices, and the function adopted here can be used to generate quasiperiodic lattices with enumeration of lattice points. Our result is expected to initiate the search of directional scaling symmetry in more complicated geometries.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Enumeration ; Honeycomb construction ; Lattices ; Platinum ; Scaling factors ; Symmetry ; Two dimensional models</subject><ispartof>arXiv.org, 2014-05</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Liao, Longguang</creatorcontrib><creatorcontrib>Cao, Zexian</creatorcontrib><title>Directional Scaling Symmetry of High-symmetry Two-dimensional Lattices</title><title>arXiv.org</title><description>Two-dimensional lattices provide the arena for many physics problems of essential importance, a non-trivial symmetry in such lattices will help to reveal the underlying physics. Whether there is a directional scaling for the 2D lattices is a longstanding puzzle. Here we report the discovery and proof of directional scaling symmetry for high symmetry 2D lattices, i.e., the square lattice, the equilateral triangular lattice and thus the honeycomb lattice, with the aid of the function , where x is either the platinum number or the silver number , which are related to the 12-fold and 8-fold quasiperiodic structures, respectively. The directions and the corresponding scaling factors for the symmetric scaling transformation are determined. The revealed scaling symmetry may have a bearing on the various physical problems modeled on 2D lattices, and the function adopted here can be used to generate quasiperiodic lattices with enumeration of lattice points. Our result is expected to initiate the search of directional scaling symmetry in more complicated geometries.</description><subject>Enumeration</subject><subject>Honeycomb construction</subject><subject>Lattices</subject><subject>Platinum</subject><subject>Scaling factors</subject><subject>Symmetry</subject><subject>Two dimensional models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi08LgjAcQEcQJOV3GHQe7I8r75V46KZ3GTptsrnabxJ--4Lq3unB470VSrgQjOQZ5xuUAoyUUn44cilFgoqzCbqNxk_K4qpV1kwDrhbndAwL9j0uzXAj8BP105POOD3B57iqGE2rYYfWvbKg0y-3aF9c6lNJ7sE_Zg2xGf0c3gc0nOYZYzSTVPxXvQDt6juV</recordid><startdate>20140514</startdate><enddate>20140514</enddate><creator>Liao, Longguang</creator><creator>Cao, Zexian</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140514</creationdate><title>Directional Scaling Symmetry of High-symmetry Two-dimensional Lattices</title><author>Liao, Longguang ; Cao, Zexian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20841104503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Enumeration</topic><topic>Honeycomb construction</topic><topic>Lattices</topic><topic>Platinum</topic><topic>Scaling factors</topic><topic>Symmetry</topic><topic>Two dimensional models</topic><toplevel>online_resources</toplevel><creatorcontrib>Liao, Longguang</creatorcontrib><creatorcontrib>Cao, Zexian</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Longguang</au><au>Cao, Zexian</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Directional Scaling Symmetry of High-symmetry Two-dimensional Lattices</atitle><jtitle>arXiv.org</jtitle><date>2014-05-14</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>Two-dimensional lattices provide the arena for many physics problems of essential importance, a non-trivial symmetry in such lattices will help to reveal the underlying physics. Whether there is a directional scaling for the 2D lattices is a longstanding puzzle. Here we report the discovery and proof of directional scaling symmetry for high symmetry 2D lattices, i.e., the square lattice, the equilateral triangular lattice and thus the honeycomb lattice, with the aid of the function , where x is either the platinum number or the silver number , which are related to the 12-fold and 8-fold quasiperiodic structures, respectively. The directions and the corresponding scaling factors for the symmetric scaling transformation are determined. The revealed scaling symmetry may have a bearing on the various physical problems modeled on 2D lattices, and the function adopted here can be used to generate quasiperiodic lattices with enumeration of lattice points. Our result is expected to initiate the search of directional scaling symmetry in more complicated geometries.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2014-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2084110450
source Free E- Journals
subjects Enumeration
Honeycomb construction
Lattices
Platinum
Scaling factors
Symmetry
Two dimensional models
title Directional Scaling Symmetry of High-symmetry Two-dimensional Lattices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T23%3A31%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Directional%20Scaling%20Symmetry%20of%20High-symmetry%20Two-dimensional%20Lattices&rft.jtitle=arXiv.org&rft.au=Liao,%20Longguang&rft.date=2014-05-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2084110450%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084110450&rft_id=info:pmid/&rfr_iscdi=true