On-the-Job Learning with Bayesian Decision Theory
Our goal is to deploy a high-accuracy system starting with zero training examples. We consider an "on-the-job" setting, where as inputs arrive, we use real-time crowdsourcing to resolve uncertainty where needed and output our prediction when confident. As the model improves over time, the...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2015-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!