A generalized entropy characterization of N -dimensional fractal control systems

It is presented the general properties of N-dimensional multi-component or many-particle systems exhibiting self-similar hierarchical structure. Assuming there exists an optimal coarse-graining scale at which the quality and diversity of the (box-counting) fractal dimensions exhibited by a given sys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2014-04
1. Verfasser: Gaudiano, Marcos E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Gaudiano, Marcos E
description It is presented the general properties of N-dimensional multi-component or many-particle systems exhibiting self-similar hierarchical structure. Assuming there exists an optimal coarse-graining scale at which the quality and diversity of the (box-counting) fractal dimensions exhibited by a given system are optimized, it is computed the generalized entropy of each hypercube of the partitioned system and shown that its shape is universal, as it also exhibits self-similarity and hence does not depend on the dimensionality N . For certain systems this shape may also be associated with the large time stationary profile of the fractal density distribution in the absence of external fields (or control).
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2084007986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084007986</sourcerecordid><originalsourceid>FETCH-proquest_journals_20840079863</originalsourceid><addsrcrecordid>eNqNjL0KwjAURoMgWLTvcMG5ENNfRxHFSRzcS2hvNSVNam46tE9vCz6A0-GDc74VC0QcH6IiEWLDQqKWcy6yXKRpHLDHCV5o0EmtJqwBjXe2H6F6Sycrj05N0itrwDZwh6hWHRqat9TQLMLMyi6NBhrJY0c7tm6kJgx_3LL99fI836Le2c-A5MvWDm4-oFLwIuE8PxZZ_J_1BbIrP60</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084007986</pqid></control><display><type>article</type><title>A generalized entropy characterization of N -dimensional fractal control systems</title><source>Free E- Journals</source><creator>Gaudiano, Marcos E</creator><creatorcontrib>Gaudiano, Marcos E</creatorcontrib><description>It is presented the general properties of N-dimensional multi-component or many-particle systems exhibiting self-similar hierarchical structure. Assuming there exists an optimal coarse-graining scale at which the quality and diversity of the (box-counting) fractal dimensions exhibited by a given system are optimized, it is computed the generalized entropy of each hypercube of the partitioned system and shown that its shape is universal, as it also exhibits self-similarity and hence does not depend on the dimensionality N . For certain systems this shape may also be associated with the large time stationary profile of the fractal density distribution in the absence of external fields (or control).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Density distribution ; Entropy ; Fractal geometry ; Fractals ; Granulation ; Hypercubes ; Self-similarity ; Structural hierarchy</subject><ispartof>arXiv.org, 2014-04</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Gaudiano, Marcos E</creatorcontrib><title>A generalized entropy characterization of N -dimensional fractal control systems</title><title>arXiv.org</title><description>It is presented the general properties of N-dimensional multi-component or many-particle systems exhibiting self-similar hierarchical structure. Assuming there exists an optimal coarse-graining scale at which the quality and diversity of the (box-counting) fractal dimensions exhibited by a given system are optimized, it is computed the generalized entropy of each hypercube of the partitioned system and shown that its shape is universal, as it also exhibits self-similarity and hence does not depend on the dimensionality N . For certain systems this shape may also be associated with the large time stationary profile of the fractal density distribution in the absence of external fields (or control).</description><subject>Density distribution</subject><subject>Entropy</subject><subject>Fractal geometry</subject><subject>Fractals</subject><subject>Granulation</subject><subject>Hypercubes</subject><subject>Self-similarity</subject><subject>Structural hierarchy</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjL0KwjAURoMgWLTvcMG5ENNfRxHFSRzcS2hvNSVNam46tE9vCz6A0-GDc74VC0QcH6IiEWLDQqKWcy6yXKRpHLDHCV5o0EmtJqwBjXe2H6F6Sycrj05N0itrwDZwh6hWHRqat9TQLMLMyi6NBhrJY0c7tm6kJgx_3LL99fI836Le2c-A5MvWDm4-oFLwIuE8PxZZ_J_1BbIrP60</recordid><startdate>20140421</startdate><enddate>20140421</enddate><creator>Gaudiano, Marcos E</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140421</creationdate><title>A generalized entropy characterization of N -dimensional fractal control systems</title><author>Gaudiano, Marcos E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20840079863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Density distribution</topic><topic>Entropy</topic><topic>Fractal geometry</topic><topic>Fractals</topic><topic>Granulation</topic><topic>Hypercubes</topic><topic>Self-similarity</topic><topic>Structural hierarchy</topic><toplevel>online_resources</toplevel><creatorcontrib>Gaudiano, Marcos E</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaudiano, Marcos E</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A generalized entropy characterization of N -dimensional fractal control systems</atitle><jtitle>arXiv.org</jtitle><date>2014-04-21</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>It is presented the general properties of N-dimensional multi-component or many-particle systems exhibiting self-similar hierarchical structure. Assuming there exists an optimal coarse-graining scale at which the quality and diversity of the (box-counting) fractal dimensions exhibited by a given system are optimized, it is computed the generalized entropy of each hypercube of the partitioned system and shown that its shape is universal, as it also exhibits self-similarity and hence does not depend on the dimensionality N . For certain systems this shape may also be associated with the large time stationary profile of the fractal density distribution in the absence of external fields (or control).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2014-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2084007986
source Free E- Journals
subjects Density distribution
Entropy
Fractal geometry
Fractals
Granulation
Hypercubes
Self-similarity
Structural hierarchy
title A generalized entropy characterization of N -dimensional fractal control systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A22%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20generalized%20entropy%20characterization%20of%20N%20-dimensional%20fractal%20control%20systems&rft.jtitle=arXiv.org&rft.au=Gaudiano,%20Marcos%20E&rft.date=2014-04-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2084007986%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084007986&rft_id=info:pmid/&rfr_iscdi=true