A generalized entropy characterization of N -dimensional fractal control systems
It is presented the general properties of N-dimensional multi-component or many-particle systems exhibiting self-similar hierarchical structure. Assuming there exists an optimal coarse-graining scale at which the quality and diversity of the (box-counting) fractal dimensions exhibited by a given sys...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2014-04 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Gaudiano, Marcos E |
description | It is presented the general properties of N-dimensional multi-component or many-particle systems exhibiting self-similar hierarchical structure. Assuming there exists an optimal coarse-graining scale at which the quality and diversity of the (box-counting) fractal dimensions exhibited by a given system are optimized, it is computed the generalized entropy of each hypercube of the partitioned system and shown that its shape is universal, as it also exhibits self-similarity and hence does not depend on the dimensionality N . For certain systems this shape may also be associated with the large time stationary profile of the fractal density distribution in the absence of external fields (or control). |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2084007986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084007986</sourcerecordid><originalsourceid>FETCH-proquest_journals_20840079863</originalsourceid><addsrcrecordid>eNqNjL0KwjAURoMgWLTvcMG5ENNfRxHFSRzcS2hvNSVNam46tE9vCz6A0-GDc74VC0QcH6IiEWLDQqKWcy6yXKRpHLDHCV5o0EmtJqwBjXe2H6F6Sycrj05N0itrwDZwh6hWHRqat9TQLMLMyi6NBhrJY0c7tm6kJgx_3LL99fI836Le2c-A5MvWDm4-oFLwIuE8PxZZ_J_1BbIrP60</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084007986</pqid></control><display><type>article</type><title>A generalized entropy characterization of N -dimensional fractal control systems</title><source>Free E- Journals</source><creator>Gaudiano, Marcos E</creator><creatorcontrib>Gaudiano, Marcos E</creatorcontrib><description>It is presented the general properties of N-dimensional multi-component or many-particle systems exhibiting self-similar hierarchical structure. Assuming there exists an optimal coarse-graining scale at which the quality and diversity of the (box-counting) fractal dimensions exhibited by a given system are optimized, it is computed the generalized entropy of each hypercube of the partitioned system and shown that its shape is universal, as it also exhibits self-similarity and hence does not depend on the dimensionality N . For certain systems this shape may also be associated with the large time stationary profile of the fractal density distribution in the absence of external fields (or control).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Density distribution ; Entropy ; Fractal geometry ; Fractals ; Granulation ; Hypercubes ; Self-similarity ; Structural hierarchy</subject><ispartof>arXiv.org, 2014-04</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Gaudiano, Marcos E</creatorcontrib><title>A generalized entropy characterization of N -dimensional fractal control systems</title><title>arXiv.org</title><description>It is presented the general properties of N-dimensional multi-component or many-particle systems exhibiting self-similar hierarchical structure. Assuming there exists an optimal coarse-graining scale at which the quality and diversity of the (box-counting) fractal dimensions exhibited by a given system are optimized, it is computed the generalized entropy of each hypercube of the partitioned system and shown that its shape is universal, as it also exhibits self-similarity and hence does not depend on the dimensionality N . For certain systems this shape may also be associated with the large time stationary profile of the fractal density distribution in the absence of external fields (or control).</description><subject>Density distribution</subject><subject>Entropy</subject><subject>Fractal geometry</subject><subject>Fractals</subject><subject>Granulation</subject><subject>Hypercubes</subject><subject>Self-similarity</subject><subject>Structural hierarchy</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjL0KwjAURoMgWLTvcMG5ENNfRxHFSRzcS2hvNSVNam46tE9vCz6A0-GDc74VC0QcH6IiEWLDQqKWcy6yXKRpHLDHCV5o0EmtJqwBjXe2H6F6Sycrj05N0itrwDZwh6hWHRqat9TQLMLMyi6NBhrJY0c7tm6kJgx_3LL99fI836Le2c-A5MvWDm4-oFLwIuE8PxZZ_J_1BbIrP60</recordid><startdate>20140421</startdate><enddate>20140421</enddate><creator>Gaudiano, Marcos E</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140421</creationdate><title>A generalized entropy characterization of N -dimensional fractal control systems</title><author>Gaudiano, Marcos E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20840079863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Density distribution</topic><topic>Entropy</topic><topic>Fractal geometry</topic><topic>Fractals</topic><topic>Granulation</topic><topic>Hypercubes</topic><topic>Self-similarity</topic><topic>Structural hierarchy</topic><toplevel>online_resources</toplevel><creatorcontrib>Gaudiano, Marcos E</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaudiano, Marcos E</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A generalized entropy characterization of N -dimensional fractal control systems</atitle><jtitle>arXiv.org</jtitle><date>2014-04-21</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>It is presented the general properties of N-dimensional multi-component or many-particle systems exhibiting self-similar hierarchical structure. Assuming there exists an optimal coarse-graining scale at which the quality and diversity of the (box-counting) fractal dimensions exhibited by a given system are optimized, it is computed the generalized entropy of each hypercube of the partitioned system and shown that its shape is universal, as it also exhibits self-similarity and hence does not depend on the dimensionality N . For certain systems this shape may also be associated with the large time stationary profile of the fractal density distribution in the absence of external fields (or control).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2014-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2084007986 |
source | Free E- Journals |
subjects | Density distribution Entropy Fractal geometry Fractals Granulation Hypercubes Self-similarity Structural hierarchy |
title | A generalized entropy characterization of N -dimensional fractal control systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A22%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20generalized%20entropy%20characterization%20of%20N%20-dimensional%20fractal%20control%20systems&rft.jtitle=arXiv.org&rft.au=Gaudiano,%20Marcos%20E&rft.date=2014-04-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2084007986%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084007986&rft_id=info:pmid/&rfr_iscdi=true |