Piezoelectric properties of graphene oxide from the first-principles calculations

Some highly ordered compounds of graphene oxide (GO), e.g., the so-called clamped and unzipped GO, are shown to have piezoelectric responses via first-principles density functional calculations. By applying an electric field perpendicular to the GO basal plane, the largest value of in-plane strain a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2014-04
Hauptverfasser: Chang, Zhenyue, Yan, Wenyi, Shang, Jin, Liu, Jefferson Zhe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Chang, Zhenyue
Yan, Wenyi
Shang, Jin
Liu, Jefferson Zhe
description Some highly ordered compounds of graphene oxide (GO), e.g., the so-called clamped and unzipped GO, are shown to have piezoelectric responses via first-principles density functional calculations. By applying an electric field perpendicular to the GO basal plane, the largest value of in-plane strain and strain piezoelectric coefficient, d31 are found to be 0.12% and 0.24 pm/V, respectively, which are comparable with those of some advanced piezoelectric materials. An in-depth molecular structural analysis reveals that deformation of the oxygen doping regions in the clamped GO dominates its overall strain output, whereas deformation of the regions without oxygen dopant in the unzipped GO determines its overall piezoelectric strain. This understanding explains the observed dependence of d31 on oxygen doping rate, i.e., higher oxygen concentration giving rise to a larger d31 in the clamped GO whereas leading to a reduced d31 in the unzipped GO. As the thinnest two-dimensional piezoelectric materials, GO has a great potential for a wide range of MEMS/NEMS actuators and sensors.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2084000304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084000304</sourcerecordid><originalsourceid>FETCH-proquest_journals_20840003043</originalsourceid><addsrcrecordid>eNqNzsEKwjAQBNAgCBbtPwQ8F2LSau-ieFTwLiVu7ZaYjZsUxK83Bz_A0wzMO8xMFNqYTdXWWi9EGeOolNLbnW4aU4jLGeFD4MAmRisDUwBOCFFSLx_chQE8SHrjHWTP9JRpyAU5pioweovBZWs7ZyfXJSQfV2Ledy5C-culWB8P1_0pe3pNENNtpIl9nm5atXU-Y1Rt_lNfQDtAXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084000304</pqid></control><display><type>article</type><title>Piezoelectric properties of graphene oxide from the first-principles calculations</title><source>Free E- Journals</source><creator>Chang, Zhenyue ; Yan, Wenyi ; Shang, Jin ; Liu, Jefferson Zhe</creator><creatorcontrib>Chang, Zhenyue ; Yan, Wenyi ; Shang, Jin ; Liu, Jefferson Zhe</creatorcontrib><description>Some highly ordered compounds of graphene oxide (GO), e.g., the so-called clamped and unzipped GO, are shown to have piezoelectric responses via first-principles density functional calculations. By applying an electric field perpendicular to the GO basal plane, the largest value of in-plane strain and strain piezoelectric coefficient, d31 are found to be 0.12% and 0.24 pm/V, respectively, which are comparable with those of some advanced piezoelectric materials. An in-depth molecular structural analysis reveals that deformation of the oxygen doping regions in the clamped GO dominates its overall strain output, whereas deformation of the regions without oxygen dopant in the unzipped GO determines its overall piezoelectric strain. This understanding explains the observed dependence of d31 on oxygen doping rate, i.e., higher oxygen concentration giving rise to a larger d31 in the clamped GO whereas leading to a reduced d31 in the unzipped GO. As the thinnest two-dimensional piezoelectric materials, GO has a great potential for a wide range of MEMS/NEMS actuators and sensors.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Actuators ; Basal plane ; Deformation mechanisms ; Dependence ; Doping ; Electric fields ; Electricity ; First principles ; Graphene ; Mathematical analysis ; Microelectromechanical systems ; Nanoelectromechanical systems ; Oxygen ; Piezoelectricity ; Plane strain ; Structural analysis</subject><ispartof>arXiv.org, 2014-04</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Chang, Zhenyue</creatorcontrib><creatorcontrib>Yan, Wenyi</creatorcontrib><creatorcontrib>Shang, Jin</creatorcontrib><creatorcontrib>Liu, Jefferson Zhe</creatorcontrib><title>Piezoelectric properties of graphene oxide from the first-principles calculations</title><title>arXiv.org</title><description>Some highly ordered compounds of graphene oxide (GO), e.g., the so-called clamped and unzipped GO, are shown to have piezoelectric responses via first-principles density functional calculations. By applying an electric field perpendicular to the GO basal plane, the largest value of in-plane strain and strain piezoelectric coefficient, d31 are found to be 0.12% and 0.24 pm/V, respectively, which are comparable with those of some advanced piezoelectric materials. An in-depth molecular structural analysis reveals that deformation of the oxygen doping regions in the clamped GO dominates its overall strain output, whereas deformation of the regions without oxygen dopant in the unzipped GO determines its overall piezoelectric strain. This understanding explains the observed dependence of d31 on oxygen doping rate, i.e., higher oxygen concentration giving rise to a larger d31 in the clamped GO whereas leading to a reduced d31 in the unzipped GO. As the thinnest two-dimensional piezoelectric materials, GO has a great potential for a wide range of MEMS/NEMS actuators and sensors.</description><subject>Actuators</subject><subject>Basal plane</subject><subject>Deformation mechanisms</subject><subject>Dependence</subject><subject>Doping</subject><subject>Electric fields</subject><subject>Electricity</subject><subject>First principles</subject><subject>Graphene</subject><subject>Mathematical analysis</subject><subject>Microelectromechanical systems</subject><subject>Nanoelectromechanical systems</subject><subject>Oxygen</subject><subject>Piezoelectricity</subject><subject>Plane strain</subject><subject>Structural analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNzsEKwjAQBNAgCBbtPwQ8F2LSau-ieFTwLiVu7ZaYjZsUxK83Bz_A0wzMO8xMFNqYTdXWWi9EGeOolNLbnW4aU4jLGeFD4MAmRisDUwBOCFFSLx_chQE8SHrjHWTP9JRpyAU5pioweovBZWs7ZyfXJSQfV2Ledy5C-culWB8P1_0pe3pNENNtpIl9nm5atXU-Y1Rt_lNfQDtAXA</recordid><startdate>20140406</startdate><enddate>20140406</enddate><creator>Chang, Zhenyue</creator><creator>Yan, Wenyi</creator><creator>Shang, Jin</creator><creator>Liu, Jefferson Zhe</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140406</creationdate><title>Piezoelectric properties of graphene oxide from the first-principles calculations</title><author>Chang, Zhenyue ; Yan, Wenyi ; Shang, Jin ; Liu, Jefferson Zhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20840003043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Actuators</topic><topic>Basal plane</topic><topic>Deformation mechanisms</topic><topic>Dependence</topic><topic>Doping</topic><topic>Electric fields</topic><topic>Electricity</topic><topic>First principles</topic><topic>Graphene</topic><topic>Mathematical analysis</topic><topic>Microelectromechanical systems</topic><topic>Nanoelectromechanical systems</topic><topic>Oxygen</topic><topic>Piezoelectricity</topic><topic>Plane strain</topic><topic>Structural analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Chang, Zhenyue</creatorcontrib><creatorcontrib>Yan, Wenyi</creatorcontrib><creatorcontrib>Shang, Jin</creatorcontrib><creatorcontrib>Liu, Jefferson Zhe</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Zhenyue</au><au>Yan, Wenyi</au><au>Shang, Jin</au><au>Liu, Jefferson Zhe</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Piezoelectric properties of graphene oxide from the first-principles calculations</atitle><jtitle>arXiv.org</jtitle><date>2014-04-06</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>Some highly ordered compounds of graphene oxide (GO), e.g., the so-called clamped and unzipped GO, are shown to have piezoelectric responses via first-principles density functional calculations. By applying an electric field perpendicular to the GO basal plane, the largest value of in-plane strain and strain piezoelectric coefficient, d31 are found to be 0.12% and 0.24 pm/V, respectively, which are comparable with those of some advanced piezoelectric materials. An in-depth molecular structural analysis reveals that deformation of the oxygen doping regions in the clamped GO dominates its overall strain output, whereas deformation of the regions without oxygen dopant in the unzipped GO determines its overall piezoelectric strain. This understanding explains the observed dependence of d31 on oxygen doping rate, i.e., higher oxygen concentration giving rise to a larger d31 in the clamped GO whereas leading to a reduced d31 in the unzipped GO. As the thinnest two-dimensional piezoelectric materials, GO has a great potential for a wide range of MEMS/NEMS actuators and sensors.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2014-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2084000304
source Free E- Journals
subjects Actuators
Basal plane
Deformation mechanisms
Dependence
Doping
Electric fields
Electricity
First principles
Graphene
Mathematical analysis
Microelectromechanical systems
Nanoelectromechanical systems
Oxygen
Piezoelectricity
Plane strain
Structural analysis
title Piezoelectric properties of graphene oxide from the first-principles calculations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A04%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Piezoelectric%20properties%20of%20graphene%20oxide%20from%20the%20first-principles%20calculations&rft.jtitle=arXiv.org&rft.au=Chang,%20Zhenyue&rft.date=2014-04-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2084000304%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2084000304&rft_id=info:pmid/&rfr_iscdi=true