Analysis of Compatible Discrete Operator Schemes for the Stokes Equations on Polyhedral Meshes
Compatible Discrete Operator schemes preserve basic properties of the continuous model at the discrete level. They combine discrete differential operators that discretize exactly topological laws and discrete Hodge operators that approximate constitutive relations. We devise and analyze two families...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2014-01 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bonelle, Jerome Ern, Alexandre |
description | Compatible Discrete Operator schemes preserve basic properties of the continuous model at the discrete level. They combine discrete differential operators that discretize exactly topological laws and discrete Hodge operators that approximate constitutive relations. We devise and analyze two families of such schemes for the Stokes equations in curl formulation, with the pressure degrees of freedom located at either mesh vertices or cells. The schemes ensure local mass and momentum conservation. We prove discrete stability by establishing novel discrete Poincaré inequalities. Using commutators related to the consistency error, we derive error estimates with first-order convergence rates for smooth solutions. We analyze two strategies for discretizing the external load, so as to deliver tight error estimates when the external load has a large irrotational or divergence-free part. Finally, numerical results are presented on three-dimensional polyhedral meshes. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083959916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083959916</sourcerecordid><originalsourceid>FETCH-proquest_journals_20839599163</originalsourceid><addsrcrecordid>eNqNjkELgkAUhJcgKMr_8KBzoLtZeowyukRBnZOtnqhtPt23Hvz37aEf0Glm4JthRmIqlYqWyUrKiQiY6zAM5Xoj41hNxX3baDNwxUAF7OjTalc9DMK-4qdFh3Bu0WpHFq7PEj_IUHjvSoSro7ePWdf7CjV-oIELmaHEl9UGTsgl8lyMC20Yg5_OxOKQ3XbHZWup65FdXlNv_QXOZZioNE7TaK3-o75VoUQ7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083959916</pqid></control><display><type>article</type><title>Analysis of Compatible Discrete Operator Schemes for the Stokes Equations on Polyhedral Meshes</title><source>Free E- Journals</source><creator>Bonelle, Jerome ; Ern, Alexandre</creator><creatorcontrib>Bonelle, Jerome ; Ern, Alexandre</creatorcontrib><description>Compatible Discrete Operator schemes preserve basic properties of the continuous model at the discrete level. They combine discrete differential operators that discretize exactly topological laws and discrete Hodge operators that approximate constitutive relations. We devise and analyze two families of such schemes for the Stokes equations in curl formulation, with the pressure degrees of freedom located at either mesh vertices or cells. The schemes ensure local mass and momentum conservation. We prove discrete stability by establishing novel discrete Poincaré inequalities. Using commutators related to the consistency error, we derive error estimates with first-order convergence rates for smooth solutions. We analyze two strategies for discretizing the external load, so as to deliver tight error estimates when the external load has a large irrotational or divergence-free part. Finally, numerical results are presented on three-dimensional polyhedral meshes.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Apexes ; Commutators ; Constitutive relationships ; Differential equations ; Divergence ; Finite element method ; Mathematical models ; Navier-Stokes equations ; Operators (mathematics)</subject><ispartof>arXiv.org, 2014-01</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Bonelle, Jerome</creatorcontrib><creatorcontrib>Ern, Alexandre</creatorcontrib><title>Analysis of Compatible Discrete Operator Schemes for the Stokes Equations on Polyhedral Meshes</title><title>arXiv.org</title><description>Compatible Discrete Operator schemes preserve basic properties of the continuous model at the discrete level. They combine discrete differential operators that discretize exactly topological laws and discrete Hodge operators that approximate constitutive relations. We devise and analyze two families of such schemes for the Stokes equations in curl formulation, with the pressure degrees of freedom located at either mesh vertices or cells. The schemes ensure local mass and momentum conservation. We prove discrete stability by establishing novel discrete Poincaré inequalities. Using commutators related to the consistency error, we derive error estimates with first-order convergence rates for smooth solutions. We analyze two strategies for discretizing the external load, so as to deliver tight error estimates when the external load has a large irrotational or divergence-free part. Finally, numerical results are presented on three-dimensional polyhedral meshes.</description><subject>Apexes</subject><subject>Commutators</subject><subject>Constitutive relationships</subject><subject>Differential equations</subject><subject>Divergence</subject><subject>Finite element method</subject><subject>Mathematical models</subject><subject>Navier-Stokes equations</subject><subject>Operators (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjkELgkAUhJcgKMr_8KBzoLtZeowyukRBnZOtnqhtPt23Hvz37aEf0Glm4JthRmIqlYqWyUrKiQiY6zAM5Xoj41hNxX3baDNwxUAF7OjTalc9DMK-4qdFh3Bu0WpHFq7PEj_IUHjvSoSro7ePWdf7CjV-oIELmaHEl9UGTsgl8lyMC20Yg5_OxOKQ3XbHZWup65FdXlNv_QXOZZioNE7TaK3-o75VoUQ7</recordid><startdate>20140130</startdate><enddate>20140130</enddate><creator>Bonelle, Jerome</creator><creator>Ern, Alexandre</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140130</creationdate><title>Analysis of Compatible Discrete Operator Schemes for the Stokes Equations on Polyhedral Meshes</title><author>Bonelle, Jerome ; Ern, Alexandre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20839599163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Apexes</topic><topic>Commutators</topic><topic>Constitutive relationships</topic><topic>Differential equations</topic><topic>Divergence</topic><topic>Finite element method</topic><topic>Mathematical models</topic><topic>Navier-Stokes equations</topic><topic>Operators (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Bonelle, Jerome</creatorcontrib><creatorcontrib>Ern, Alexandre</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonelle, Jerome</au><au>Ern, Alexandre</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Analysis of Compatible Discrete Operator Schemes for the Stokes Equations on Polyhedral Meshes</atitle><jtitle>arXiv.org</jtitle><date>2014-01-30</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>Compatible Discrete Operator schemes preserve basic properties of the continuous model at the discrete level. They combine discrete differential operators that discretize exactly topological laws and discrete Hodge operators that approximate constitutive relations. We devise and analyze two families of such schemes for the Stokes equations in curl formulation, with the pressure degrees of freedom located at either mesh vertices or cells. The schemes ensure local mass and momentum conservation. We prove discrete stability by establishing novel discrete Poincaré inequalities. Using commutators related to the consistency error, we derive error estimates with first-order convergence rates for smooth solutions. We analyze two strategies for discretizing the external load, so as to deliver tight error estimates when the external load has a large irrotational or divergence-free part. Finally, numerical results are presented on three-dimensional polyhedral meshes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2014-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2083959916 |
source | Free E- Journals |
subjects | Apexes Commutators Constitutive relationships Differential equations Divergence Finite element method Mathematical models Navier-Stokes equations Operators (mathematics) |
title | Analysis of Compatible Discrete Operator Schemes for the Stokes Equations on Polyhedral Meshes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A29%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Analysis%20of%20Compatible%20Discrete%20Operator%20Schemes%20for%20the%20Stokes%20Equations%20on%20Polyhedral%20Meshes&rft.jtitle=arXiv.org&rft.au=Bonelle,%20Jerome&rft.date=2014-01-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2083959916%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2083959916&rft_id=info:pmid/&rfr_iscdi=true |