Quantitative isoperimetric inequalities for log-convex probability measures on the line
The purpose of this paper is to analyze the isoperimetric inequality for symmetric log-convex probability measures on the line. Using geometric arguments we first re-prove that extremal sets in the isoperimetric inequality are intervals or complement of intervals (a result due to Bobkov and Houdré)....
Gespeichert in:
Veröffentlicht in: | arXiv.org 2014-01 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Feo, F Posteraro, M R Roberto, C |
description | The purpose of this paper is to analyze the isoperimetric inequality for symmetric log-convex probability measures on the line. Using geometric arguments we first re-prove that extremal sets in the isoperimetric inequality are intervals or complement of intervals (a result due to Bobkov and Houdré). Then we give a quantitative form of the isoperimetric inequality, leading to a somehow anomalous behavior. Indeed, it could be that a set is very close to be optimal, in the sense that the isoperimetric inequality is almost an equality, but at the same time is very far (in the sense of the symmetric difference between sets) to any extremal sets! From the results on sets we derive quantitative functional inequalities of weak Cheeger type. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083918651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083918651</sourcerecordid><originalsourceid>FETCH-proquest_journals_20839186513</originalsourceid><addsrcrecordid>eNqNi0sKwjAUAIMgWLR3eOC60Ca21rUobgXBZYnlVV9Jkzaforc3Cw_gahYzs2AJF6LI6h3nK5Y61-d5zqs9L0uRsPs1SO3JS08zAjkzoqUBvaUWSOMUpCJP6KAzFpR5Zq3RM75htOYhHxTlBwaULtjYGA3-haDiuGHLTiqH6Y9rtj2fbsdLFscpoPNNb4LVUTU8r8WhqKuyEP9VXyluQvI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083918651</pqid></control><display><type>article</type><title>Quantitative isoperimetric inequalities for log-convex probability measures on the line</title><source>Freely Accessible Journals</source><creator>Feo, F ; Posteraro, M R ; Roberto, C</creator><creatorcontrib>Feo, F ; Posteraro, M R ; Roberto, C</creatorcontrib><description>The purpose of this paper is to analyze the isoperimetric inequality for symmetric log-convex probability measures on the line. Using geometric arguments we first re-prove that extremal sets in the isoperimetric inequality are intervals or complement of intervals (a result due to Bobkov and Houdré). Then we give a quantitative form of the isoperimetric inequality, leading to a somehow anomalous behavior. Indeed, it could be that a set is very close to be optimal, in the sense that the isoperimetric inequality is almost an equality, but at the same time is very far (in the sense of the symmetric difference between sets) to any extremal sets! From the results on sets we derive quantitative functional inequalities of weak Cheeger type.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Inequalities ; Inequality ; Intervals</subject><ispartof>arXiv.org, 2014-01</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Feo, F</creatorcontrib><creatorcontrib>Posteraro, M R</creatorcontrib><creatorcontrib>Roberto, C</creatorcontrib><title>Quantitative isoperimetric inequalities for log-convex probability measures on the line</title><title>arXiv.org</title><description>The purpose of this paper is to analyze the isoperimetric inequality for symmetric log-convex probability measures on the line. Using geometric arguments we first re-prove that extremal sets in the isoperimetric inequality are intervals or complement of intervals (a result due to Bobkov and Houdré). Then we give a quantitative form of the isoperimetric inequality, leading to a somehow anomalous behavior. Indeed, it could be that a set is very close to be optimal, in the sense that the isoperimetric inequality is almost an equality, but at the same time is very far (in the sense of the symmetric difference between sets) to any extremal sets! From the results on sets we derive quantitative functional inequalities of weak Cheeger type.</description><subject>Inequalities</subject><subject>Inequality</subject><subject>Intervals</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi0sKwjAUAIMgWLR3eOC60Ca21rUobgXBZYnlVV9Jkzaforc3Cw_gahYzs2AJF6LI6h3nK5Y61-d5zqs9L0uRsPs1SO3JS08zAjkzoqUBvaUWSOMUpCJP6KAzFpR5Zq3RM75htOYhHxTlBwaULtjYGA3-haDiuGHLTiqH6Y9rtj2fbsdLFscpoPNNb4LVUTU8r8WhqKuyEP9VXyluQvI</recordid><startdate>20140103</startdate><enddate>20140103</enddate><creator>Feo, F</creator><creator>Posteraro, M R</creator><creator>Roberto, C</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140103</creationdate><title>Quantitative isoperimetric inequalities for log-convex probability measures on the line</title><author>Feo, F ; Posteraro, M R ; Roberto, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20839186513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Inequalities</topic><topic>Inequality</topic><topic>Intervals</topic><toplevel>online_resources</toplevel><creatorcontrib>Feo, F</creatorcontrib><creatorcontrib>Posteraro, M R</creatorcontrib><creatorcontrib>Roberto, C</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feo, F</au><au>Posteraro, M R</au><au>Roberto, C</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Quantitative isoperimetric inequalities for log-convex probability measures on the line</atitle><jtitle>arXiv.org</jtitle><date>2014-01-03</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>The purpose of this paper is to analyze the isoperimetric inequality for symmetric log-convex probability measures on the line. Using geometric arguments we first re-prove that extremal sets in the isoperimetric inequality are intervals or complement of intervals (a result due to Bobkov and Houdré). Then we give a quantitative form of the isoperimetric inequality, leading to a somehow anomalous behavior. Indeed, it could be that a set is very close to be optimal, in the sense that the isoperimetric inequality is almost an equality, but at the same time is very far (in the sense of the symmetric difference between sets) to any extremal sets! From the results on sets we derive quantitative functional inequalities of weak Cheeger type.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2014-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2083918651 |
source | Freely Accessible Journals |
subjects | Inequalities Inequality Intervals |
title | Quantitative isoperimetric inequalities for log-convex probability measures on the line |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T06%3A51%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Quantitative%20isoperimetric%20inequalities%20for%20log-convex%20probability%20measures%20on%20the%20line&rft.jtitle=arXiv.org&rft.au=Feo,%20F&rft.date=2014-01-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2083918651%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2083918651&rft_id=info:pmid/&rfr_iscdi=true |