Quantitative isoperimetric inequalities for log-convex probability measures on the line

The purpose of this paper is to analyze the isoperimetric inequality for symmetric log-convex probability measures on the line. Using geometric arguments we first re-prove that extremal sets in the isoperimetric inequality are intervals or complement of intervals (a result due to Bobkov and Houdré)....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2014-01
Hauptverfasser: Feo, F, Posteraro, M R, Roberto, C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Feo, F
Posteraro, M R
Roberto, C
description The purpose of this paper is to analyze the isoperimetric inequality for symmetric log-convex probability measures on the line. Using geometric arguments we first re-prove that extremal sets in the isoperimetric inequality are intervals or complement of intervals (a result due to Bobkov and Houdré). Then we give a quantitative form of the isoperimetric inequality, leading to a somehow anomalous behavior. Indeed, it could be that a set is very close to be optimal, in the sense that the isoperimetric inequality is almost an equality, but at the same time is very far (in the sense of the symmetric difference between sets) to any extremal sets! From the results on sets we derive quantitative functional inequalities of weak Cheeger type.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083918651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083918651</sourcerecordid><originalsourceid>FETCH-proquest_journals_20839186513</originalsourceid><addsrcrecordid>eNqNi0sKwjAUAIMgWLR3eOC60Ca21rUobgXBZYnlVV9Jkzaforc3Cw_gahYzs2AJF6LI6h3nK5Y61-d5zqs9L0uRsPs1SO3JS08zAjkzoqUBvaUWSOMUpCJP6KAzFpR5Zq3RM75htOYhHxTlBwaULtjYGA3-haDiuGHLTiqH6Y9rtj2fbsdLFscpoPNNb4LVUTU8r8WhqKuyEP9VXyluQvI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083918651</pqid></control><display><type>article</type><title>Quantitative isoperimetric inequalities for log-convex probability measures on the line</title><source>Freely Accessible Journals</source><creator>Feo, F ; Posteraro, M R ; Roberto, C</creator><creatorcontrib>Feo, F ; Posteraro, M R ; Roberto, C</creatorcontrib><description>The purpose of this paper is to analyze the isoperimetric inequality for symmetric log-convex probability measures on the line. Using geometric arguments we first re-prove that extremal sets in the isoperimetric inequality are intervals or complement of intervals (a result due to Bobkov and Houdré). Then we give a quantitative form of the isoperimetric inequality, leading to a somehow anomalous behavior. Indeed, it could be that a set is very close to be optimal, in the sense that the isoperimetric inequality is almost an equality, but at the same time is very far (in the sense of the symmetric difference between sets) to any extremal sets! From the results on sets we derive quantitative functional inequalities of weak Cheeger type.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Inequalities ; Inequality ; Intervals</subject><ispartof>arXiv.org, 2014-01</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Feo, F</creatorcontrib><creatorcontrib>Posteraro, M R</creatorcontrib><creatorcontrib>Roberto, C</creatorcontrib><title>Quantitative isoperimetric inequalities for log-convex probability measures on the line</title><title>arXiv.org</title><description>The purpose of this paper is to analyze the isoperimetric inequality for symmetric log-convex probability measures on the line. Using geometric arguments we first re-prove that extremal sets in the isoperimetric inequality are intervals or complement of intervals (a result due to Bobkov and Houdré). Then we give a quantitative form of the isoperimetric inequality, leading to a somehow anomalous behavior. Indeed, it could be that a set is very close to be optimal, in the sense that the isoperimetric inequality is almost an equality, but at the same time is very far (in the sense of the symmetric difference between sets) to any extremal sets! From the results on sets we derive quantitative functional inequalities of weak Cheeger type.</description><subject>Inequalities</subject><subject>Inequality</subject><subject>Intervals</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi0sKwjAUAIMgWLR3eOC60Ca21rUobgXBZYnlVV9Jkzaforc3Cw_gahYzs2AJF6LI6h3nK5Y61-d5zqs9L0uRsPs1SO3JS08zAjkzoqUBvaUWSOMUpCJP6KAzFpR5Zq3RM75htOYhHxTlBwaULtjYGA3-haDiuGHLTiqH6Y9rtj2fbsdLFscpoPNNb4LVUTU8r8WhqKuyEP9VXyluQvI</recordid><startdate>20140103</startdate><enddate>20140103</enddate><creator>Feo, F</creator><creator>Posteraro, M R</creator><creator>Roberto, C</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140103</creationdate><title>Quantitative isoperimetric inequalities for log-convex probability measures on the line</title><author>Feo, F ; Posteraro, M R ; Roberto, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20839186513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Inequalities</topic><topic>Inequality</topic><topic>Intervals</topic><toplevel>online_resources</toplevel><creatorcontrib>Feo, F</creatorcontrib><creatorcontrib>Posteraro, M R</creatorcontrib><creatorcontrib>Roberto, C</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feo, F</au><au>Posteraro, M R</au><au>Roberto, C</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Quantitative isoperimetric inequalities for log-convex probability measures on the line</atitle><jtitle>arXiv.org</jtitle><date>2014-01-03</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>The purpose of this paper is to analyze the isoperimetric inequality for symmetric log-convex probability measures on the line. Using geometric arguments we first re-prove that extremal sets in the isoperimetric inequality are intervals or complement of intervals (a result due to Bobkov and Houdré). Then we give a quantitative form of the isoperimetric inequality, leading to a somehow anomalous behavior. Indeed, it could be that a set is very close to be optimal, in the sense that the isoperimetric inequality is almost an equality, but at the same time is very far (in the sense of the symmetric difference between sets) to any extremal sets! From the results on sets we derive quantitative functional inequalities of weak Cheeger type.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2014-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2083918651
source Freely Accessible Journals
subjects Inequalities
Inequality
Intervals
title Quantitative isoperimetric inequalities for log-convex probability measures on the line
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T06%3A51%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Quantitative%20isoperimetric%20inequalities%20for%20log-convex%20probability%20measures%20on%20the%20line&rft.jtitle=arXiv.org&rft.au=Feo,%20F&rft.date=2014-01-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2083918651%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2083918651&rft_id=info:pmid/&rfr_iscdi=true