Repairable Fountain Codes
We introduce a new family of Fountain codes that are systematic and also have sparse parities. Given an input of \(k\) symbols, our codes produce an unbounded number of output symbols, generating each parity independently by linearly combining a logarithmic number of randomly selected input symbols....
Gespeichert in:
Veröffentlicht in: | arXiv.org 2014-01 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Asteris, Megasthenis Dimakis, Alexandros G |
description | We introduce a new family of Fountain codes that are systematic and also have sparse parities. Given an input of \(k\) symbols, our codes produce an unbounded number of output symbols, generating each parity independently by linearly combining a logarithmic number of randomly selected input symbols. The construction guarantees that for any \(\epsilon>0\) accessing a random subset of \((1+\epsilon)k\) encoded symbols, asymptotically suffices to recover the \(k\) input symbols with high probability. Our codes have the additional benefit of logarithmic locality: a single lost symbol can be repaired by accessing a subset of \(O(\log k)\) of the remaining encoded symbols. This is a desired property for distributed storage systems where symbols are spread over a network of storage nodes. Beyond recovery upon loss, local reconstruction provides an efficient alternative for reading symbols that cannot be accessed directly. In our code, a logarithmic number of disjoint local groups is associated with each systematic symbol, allowing multiple parallel reads. Our main mathematical contribution involves analyzing the rank of sparse random matrices with specific structure over finite fields. We rely on establishing that a new family of sparse random bipartite graphs have perfect matchings with high probability. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083881539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083881539</sourcerecordid><originalsourceid>FETCH-proquest_journals_20838815393</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQDEotSMwsSkzKSVVwyy_NK0nMzFNwzk9JLeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjAwtjCwtDU2NLY-JUAQCIzypl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083881539</pqid></control><display><type>article</type><title>Repairable Fountain Codes</title><source>Free E- Journals</source><creator>Asteris, Megasthenis ; Dimakis, Alexandros G</creator><creatorcontrib>Asteris, Megasthenis ; Dimakis, Alexandros G</creatorcontrib><description>We introduce a new family of Fountain codes that are systematic and also have sparse parities. Given an input of \(k\) symbols, our codes produce an unbounded number of output symbols, generating each parity independently by linearly combining a logarithmic number of randomly selected input symbols. The construction guarantees that for any \(\epsilon>0\) accessing a random subset of \((1+\epsilon)k\) encoded symbols, asymptotically suffices to recover the \(k\) input symbols with high probability. Our codes have the additional benefit of logarithmic locality: a single lost symbol can be repaired by accessing a subset of \(O(\log k)\) of the remaining encoded symbols. This is a desired property for distributed storage systems where symbols are spread over a network of storage nodes. Beyond recovery upon loss, local reconstruction provides an efficient alternative for reading symbols that cannot be accessed directly. In our code, a logarithmic number of disjoint local groups is associated with each systematic symbol, allowing multiple parallel reads. Our main mathematical contribution involves analyzing the rank of sparse random matrices with specific structure over finite fields. We rely on establishing that a new family of sparse random bipartite graphs have perfect matchings with high probability.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Codes ; Coding ; Fields (mathematics) ; Mathematical analysis ; Matrix methods ; Storage systems ; Symbols</subject><ispartof>arXiv.org, 2014-01</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Asteris, Megasthenis</creatorcontrib><creatorcontrib>Dimakis, Alexandros G</creatorcontrib><title>Repairable Fountain Codes</title><title>arXiv.org</title><description>We introduce a new family of Fountain codes that are systematic and also have sparse parities. Given an input of \(k\) symbols, our codes produce an unbounded number of output symbols, generating each parity independently by linearly combining a logarithmic number of randomly selected input symbols. The construction guarantees that for any \(\epsilon>0\) accessing a random subset of \((1+\epsilon)k\) encoded symbols, asymptotically suffices to recover the \(k\) input symbols with high probability. Our codes have the additional benefit of logarithmic locality: a single lost symbol can be repaired by accessing a subset of \(O(\log k)\) of the remaining encoded symbols. This is a desired property for distributed storage systems where symbols are spread over a network of storage nodes. Beyond recovery upon loss, local reconstruction provides an efficient alternative for reading symbols that cannot be accessed directly. In our code, a logarithmic number of disjoint local groups is associated with each systematic symbol, allowing multiple parallel reads. Our main mathematical contribution involves analyzing the rank of sparse random matrices with specific structure over finite fields. We rely on establishing that a new family of sparse random bipartite graphs have perfect matchings with high probability.</description><subject>Codes</subject><subject>Coding</subject><subject>Fields (mathematics)</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Storage systems</subject><subject>Symbols</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQDEotSMwsSkzKSVVwyy_NK0nMzFNwzk9JLeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjAwtjCwtDU2NLY-JUAQCIzypl</recordid><startdate>20140103</startdate><enddate>20140103</enddate><creator>Asteris, Megasthenis</creator><creator>Dimakis, Alexandros G</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140103</creationdate><title>Repairable Fountain Codes</title><author>Asteris, Megasthenis ; Dimakis, Alexandros G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20838815393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Codes</topic><topic>Coding</topic><topic>Fields (mathematics)</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Storage systems</topic><topic>Symbols</topic><toplevel>online_resources</toplevel><creatorcontrib>Asteris, Megasthenis</creatorcontrib><creatorcontrib>Dimakis, Alexandros G</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asteris, Megasthenis</au><au>Dimakis, Alexandros G</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Repairable Fountain Codes</atitle><jtitle>arXiv.org</jtitle><date>2014-01-03</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>We introduce a new family of Fountain codes that are systematic and also have sparse parities. Given an input of \(k\) symbols, our codes produce an unbounded number of output symbols, generating each parity independently by linearly combining a logarithmic number of randomly selected input symbols. The construction guarantees that for any \(\epsilon>0\) accessing a random subset of \((1+\epsilon)k\) encoded symbols, asymptotically suffices to recover the \(k\) input symbols with high probability. Our codes have the additional benefit of logarithmic locality: a single lost symbol can be repaired by accessing a subset of \(O(\log k)\) of the remaining encoded symbols. This is a desired property for distributed storage systems where symbols are spread over a network of storage nodes. Beyond recovery upon loss, local reconstruction provides an efficient alternative for reading symbols that cannot be accessed directly. In our code, a logarithmic number of disjoint local groups is associated with each systematic symbol, allowing multiple parallel reads. Our main mathematical contribution involves analyzing the rank of sparse random matrices with specific structure over finite fields. We rely on establishing that a new family of sparse random bipartite graphs have perfect matchings with high probability.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2014-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2083881539 |
source | Free E- Journals |
subjects | Codes Coding Fields (mathematics) Mathematical analysis Matrix methods Storage systems Symbols |
title | Repairable Fountain Codes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A20%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Repairable%20Fountain%20Codes&rft.jtitle=arXiv.org&rft.au=Asteris,%20Megasthenis&rft.date=2014-01-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2083881539%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2083881539&rft_id=info:pmid/&rfr_iscdi=true |