Analyzing Stability of Convolutional Neural Networks in the Frequency Domain

Understanding the internal process of ConvNets is commonly done using visualization techniques. However, these techniques do not usually provide a tool for estimating the stability of a ConvNet against noise. In this paper, we show how to analyze a ConvNet in the frequency domain using a 4-dimension...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2015-11
Hauptverfasser: Heravi, Elnaz J, Aghdam, Hamed H, Puig, Domenec
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Heravi, Elnaz J
Aghdam, Hamed H
Puig, Domenec
description Understanding the internal process of ConvNets is commonly done using visualization techniques. However, these techniques do not usually provide a tool for estimating the stability of a ConvNet against noise. In this paper, we show how to analyze a ConvNet in the frequency domain using a 4-dimensional visualization technique. Using the frequency domain analysis, we show the reason that a ConvNet might be sensitive to a very low magnitude additive noise. Our experiments on a few ConvNets trained on different datasets revealed that convolution kernels of a trained ConvNet usually pass most of the frequencies and they are not able to effectively eliminate the effect of high frequencies. Our next experiments shows that a convolution kernel which has a more concentrated frequency response could be more stable. Finally, we show that fine-tuning a ConvNet using a training set augmented with noisy images can produce more stable ConvNets.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083869802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083869802</sourcerecordid><originalsourceid>FETCH-proquest_journals_20838698023</originalsourceid><addsrcrecordid>eNqNjL0KwjAYAIMgWLTv8IFzISa2xlGq4iAuupcoqabGfJofpT69RXwApxvuuB5JGOeTTEwZG5DU-4ZSyooZy3OekO3CStO-tT3DPsijNjq0gDWUaJ9oYtDYedip6L4IL3RXD9pCuChYO_WIyp5aWOJNajsi_Voar9Ifh2S8Xh3KTXZ32IU-VA1G1w19xajgopgLyvh_1QeCqj3X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083869802</pqid></control><display><type>article</type><title>Analyzing Stability of Convolutional Neural Networks in the Frequency Domain</title><source>Free E- Journals</source><creator>Heravi, Elnaz J ; Aghdam, Hamed H ; Puig, Domenec</creator><creatorcontrib>Heravi, Elnaz J ; Aghdam, Hamed H ; Puig, Domenec</creatorcontrib><description>Understanding the internal process of ConvNets is commonly done using visualization techniques. However, these techniques do not usually provide a tool for estimating the stability of a ConvNet against noise. In this paper, we show how to analyze a ConvNet in the frequency domain using a 4-dimensional visualization technique. Using the frequency domain analysis, we show the reason that a ConvNet might be sensitive to a very low magnitude additive noise. Our experiments on a few ConvNets trained on different datasets revealed that convolution kernels of a trained ConvNet usually pass most of the frequencies and they are not able to effectively eliminate the effect of high frequencies. Our next experiments shows that a convolution kernel which has a more concentrated frequency response could be more stable. Finally, we show that fine-tuning a ConvNet using a training set augmented with noisy images can produce more stable ConvNets.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Convolution ; Frequencies ; Frequency analysis ; Frequency domain analysis ; Frequency response ; Kernels ; Neural networks ; Stability analysis ; Visualization</subject><ispartof>arXiv.org, 2015-11</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Heravi, Elnaz J</creatorcontrib><creatorcontrib>Aghdam, Hamed H</creatorcontrib><creatorcontrib>Puig, Domenec</creatorcontrib><title>Analyzing Stability of Convolutional Neural Networks in the Frequency Domain</title><title>arXiv.org</title><description>Understanding the internal process of ConvNets is commonly done using visualization techniques. However, these techniques do not usually provide a tool for estimating the stability of a ConvNet against noise. In this paper, we show how to analyze a ConvNet in the frequency domain using a 4-dimensional visualization technique. Using the frequency domain analysis, we show the reason that a ConvNet might be sensitive to a very low magnitude additive noise. Our experiments on a few ConvNets trained on different datasets revealed that convolution kernels of a trained ConvNet usually pass most of the frequencies and they are not able to effectively eliminate the effect of high frequencies. Our next experiments shows that a convolution kernel which has a more concentrated frequency response could be more stable. Finally, we show that fine-tuning a ConvNet using a training set augmented with noisy images can produce more stable ConvNets.</description><subject>Artificial neural networks</subject><subject>Convolution</subject><subject>Frequencies</subject><subject>Frequency analysis</subject><subject>Frequency domain analysis</subject><subject>Frequency response</subject><subject>Kernels</subject><subject>Neural networks</subject><subject>Stability analysis</subject><subject>Visualization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjL0KwjAYAIMgWLTv8IFzISa2xlGq4iAuupcoqabGfJofpT69RXwApxvuuB5JGOeTTEwZG5DU-4ZSyooZy3OekO3CStO-tT3DPsijNjq0gDWUaJ9oYtDYedip6L4IL3RXD9pCuChYO_WIyp5aWOJNajsi_Voar9Ifh2S8Xh3KTXZ32IU-VA1G1w19xajgopgLyvh_1QeCqj3X</recordid><startdate>20151116</startdate><enddate>20151116</enddate><creator>Heravi, Elnaz J</creator><creator>Aghdam, Hamed H</creator><creator>Puig, Domenec</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20151116</creationdate><title>Analyzing Stability of Convolutional Neural Networks in the Frequency Domain</title><author>Heravi, Elnaz J ; Aghdam, Hamed H ; Puig, Domenec</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20838698023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Artificial neural networks</topic><topic>Convolution</topic><topic>Frequencies</topic><topic>Frequency analysis</topic><topic>Frequency domain analysis</topic><topic>Frequency response</topic><topic>Kernels</topic><topic>Neural networks</topic><topic>Stability analysis</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Heravi, Elnaz J</creatorcontrib><creatorcontrib>Aghdam, Hamed H</creatorcontrib><creatorcontrib>Puig, Domenec</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heravi, Elnaz J</au><au>Aghdam, Hamed H</au><au>Puig, Domenec</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Analyzing Stability of Convolutional Neural Networks in the Frequency Domain</atitle><jtitle>arXiv.org</jtitle><date>2015-11-16</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>Understanding the internal process of ConvNets is commonly done using visualization techniques. However, these techniques do not usually provide a tool for estimating the stability of a ConvNet against noise. In this paper, we show how to analyze a ConvNet in the frequency domain using a 4-dimensional visualization technique. Using the frequency domain analysis, we show the reason that a ConvNet might be sensitive to a very low magnitude additive noise. Our experiments on a few ConvNets trained on different datasets revealed that convolution kernels of a trained ConvNet usually pass most of the frequencies and they are not able to effectively eliminate the effect of high frequencies. Our next experiments shows that a convolution kernel which has a more concentrated frequency response could be more stable. Finally, we show that fine-tuning a ConvNet using a training set augmented with noisy images can produce more stable ConvNets.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2015-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2083869802
source Free E- Journals
subjects Artificial neural networks
Convolution
Frequencies
Frequency analysis
Frequency domain analysis
Frequency response
Kernels
Neural networks
Stability analysis
Visualization
title Analyzing Stability of Convolutional Neural Networks in the Frequency Domain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A07%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Analyzing%20Stability%20of%20Convolutional%20Neural%20Networks%20in%20the%20Frequency%20Domain&rft.jtitle=arXiv.org&rft.au=Heravi,%20Elnaz%20J&rft.date=2015-11-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2083869802%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2083869802&rft_id=info:pmid/&rfr_iscdi=true