Analyzing Stability of Convolutional Neural Networks in the Frequency Domain
Understanding the internal process of ConvNets is commonly done using visualization techniques. However, these techniques do not usually provide a tool for estimating the stability of a ConvNet against noise. In this paper, we show how to analyze a ConvNet in the frequency domain using a 4-dimension...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2015-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Heravi, Elnaz J Aghdam, Hamed H Puig, Domenec |
description | Understanding the internal process of ConvNets is commonly done using visualization techniques. However, these techniques do not usually provide a tool for estimating the stability of a ConvNet against noise. In this paper, we show how to analyze a ConvNet in the frequency domain using a 4-dimensional visualization technique. Using the frequency domain analysis, we show the reason that a ConvNet might be sensitive to a very low magnitude additive noise. Our experiments on a few ConvNets trained on different datasets revealed that convolution kernels of a trained ConvNet usually pass most of the frequencies and they are not able to effectively eliminate the effect of high frequencies. Our next experiments shows that a convolution kernel which has a more concentrated frequency response could be more stable. Finally, we show that fine-tuning a ConvNet using a training set augmented with noisy images can produce more stable ConvNets. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083869802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083869802</sourcerecordid><originalsourceid>FETCH-proquest_journals_20838698023</originalsourceid><addsrcrecordid>eNqNjL0KwjAYAIMgWLTv8IFzISa2xlGq4iAuupcoqabGfJofpT69RXwApxvuuB5JGOeTTEwZG5DU-4ZSyooZy3OekO3CStO-tT3DPsijNjq0gDWUaJ9oYtDYedip6L4IL3RXD9pCuChYO_WIyp5aWOJNajsi_Voar9Ifh2S8Xh3KTXZ32IU-VA1G1w19xajgopgLyvh_1QeCqj3X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083869802</pqid></control><display><type>article</type><title>Analyzing Stability of Convolutional Neural Networks in the Frequency Domain</title><source>Free E- Journals</source><creator>Heravi, Elnaz J ; Aghdam, Hamed H ; Puig, Domenec</creator><creatorcontrib>Heravi, Elnaz J ; Aghdam, Hamed H ; Puig, Domenec</creatorcontrib><description>Understanding the internal process of ConvNets is commonly done using visualization techniques. However, these techniques do not usually provide a tool for estimating the stability of a ConvNet against noise. In this paper, we show how to analyze a ConvNet in the frequency domain using a 4-dimensional visualization technique. Using the frequency domain analysis, we show the reason that a ConvNet might be sensitive to a very low magnitude additive noise. Our experiments on a few ConvNets trained on different datasets revealed that convolution kernels of a trained ConvNet usually pass most of the frequencies and they are not able to effectively eliminate the effect of high frequencies. Our next experiments shows that a convolution kernel which has a more concentrated frequency response could be more stable. Finally, we show that fine-tuning a ConvNet using a training set augmented with noisy images can produce more stable ConvNets.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Convolution ; Frequencies ; Frequency analysis ; Frequency domain analysis ; Frequency response ; Kernels ; Neural networks ; Stability analysis ; Visualization</subject><ispartof>arXiv.org, 2015-11</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Heravi, Elnaz J</creatorcontrib><creatorcontrib>Aghdam, Hamed H</creatorcontrib><creatorcontrib>Puig, Domenec</creatorcontrib><title>Analyzing Stability of Convolutional Neural Networks in the Frequency Domain</title><title>arXiv.org</title><description>Understanding the internal process of ConvNets is commonly done using visualization techniques. However, these techniques do not usually provide a tool for estimating the stability of a ConvNet against noise. In this paper, we show how to analyze a ConvNet in the frequency domain using a 4-dimensional visualization technique. Using the frequency domain analysis, we show the reason that a ConvNet might be sensitive to a very low magnitude additive noise. Our experiments on a few ConvNets trained on different datasets revealed that convolution kernels of a trained ConvNet usually pass most of the frequencies and they are not able to effectively eliminate the effect of high frequencies. Our next experiments shows that a convolution kernel which has a more concentrated frequency response could be more stable. Finally, we show that fine-tuning a ConvNet using a training set augmented with noisy images can produce more stable ConvNets.</description><subject>Artificial neural networks</subject><subject>Convolution</subject><subject>Frequencies</subject><subject>Frequency analysis</subject><subject>Frequency domain analysis</subject><subject>Frequency response</subject><subject>Kernels</subject><subject>Neural networks</subject><subject>Stability analysis</subject><subject>Visualization</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjL0KwjAYAIMgWLTv8IFzISa2xlGq4iAuupcoqabGfJofpT69RXwApxvuuB5JGOeTTEwZG5DU-4ZSyooZy3OekO3CStO-tT3DPsijNjq0gDWUaJ9oYtDYedip6L4IL3RXD9pCuChYO_WIyp5aWOJNajsi_Voar9Ifh2S8Xh3KTXZ32IU-VA1G1w19xajgopgLyvh_1QeCqj3X</recordid><startdate>20151116</startdate><enddate>20151116</enddate><creator>Heravi, Elnaz J</creator><creator>Aghdam, Hamed H</creator><creator>Puig, Domenec</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20151116</creationdate><title>Analyzing Stability of Convolutional Neural Networks in the Frequency Domain</title><author>Heravi, Elnaz J ; Aghdam, Hamed H ; Puig, Domenec</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20838698023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Artificial neural networks</topic><topic>Convolution</topic><topic>Frequencies</topic><topic>Frequency analysis</topic><topic>Frequency domain analysis</topic><topic>Frequency response</topic><topic>Kernels</topic><topic>Neural networks</topic><topic>Stability analysis</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Heravi, Elnaz J</creatorcontrib><creatorcontrib>Aghdam, Hamed H</creatorcontrib><creatorcontrib>Puig, Domenec</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heravi, Elnaz J</au><au>Aghdam, Hamed H</au><au>Puig, Domenec</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Analyzing Stability of Convolutional Neural Networks in the Frequency Domain</atitle><jtitle>arXiv.org</jtitle><date>2015-11-16</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>Understanding the internal process of ConvNets is commonly done using visualization techniques. However, these techniques do not usually provide a tool for estimating the stability of a ConvNet against noise. In this paper, we show how to analyze a ConvNet in the frequency domain using a 4-dimensional visualization technique. Using the frequency domain analysis, we show the reason that a ConvNet might be sensitive to a very low magnitude additive noise. Our experiments on a few ConvNets trained on different datasets revealed that convolution kernels of a trained ConvNet usually pass most of the frequencies and they are not able to effectively eliminate the effect of high frequencies. Our next experiments shows that a convolution kernel which has a more concentrated frequency response could be more stable. Finally, we show that fine-tuning a ConvNet using a training set augmented with noisy images can produce more stable ConvNets.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2015-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2083869802 |
source | Free E- Journals |
subjects | Artificial neural networks Convolution Frequencies Frequency analysis Frequency domain analysis Frequency response Kernels Neural networks Stability analysis Visualization |
title | Analyzing Stability of Convolutional Neural Networks in the Frequency Domain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T20%3A07%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Analyzing%20Stability%20of%20Convolutional%20Neural%20Networks%20in%20the%20Frequency%20Domain&rft.jtitle=arXiv.org&rft.au=Heravi,%20Elnaz%20J&rft.date=2015-11-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2083869802%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2083869802&rft_id=info:pmid/&rfr_iscdi=true |