Exploring Correlation between Labels to improve Multi-Label Classification
This paper attempts multi-label classification by extending the idea of independent binary classification models for each output label, and exploring how the inherent correlation between output labels can be used to improve predictions. Logistic Regression, Naive Bayes, Random Forest, and SVM models...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2015-11 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Garg, Amit Noyola, Jonathan Verma, Romil Saxena, Ashutosh Aditya Jami |
description | This paper attempts multi-label classification by extending the idea of independent binary classification models for each output label, and exploring how the inherent correlation between output labels can be used to improve predictions. Logistic Regression, Naive Bayes, Random Forest, and SVM models were constructed, with SVM giving the best results: an improvement of 12.9\% over binary models was achieved for hold out cross validation by augmenting with pairwise correlation probabilities of the labels. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083855780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083855780</sourcerecordid><originalsourceid>FETCH-proquest_journals_20838557803</originalsourceid><addsrcrecordid>eNqNi8EKwjAQBYMgWLT_sOC5EBNjcy8VEb15L1G2khKTmk3Vz7cUP8DTwJs3M5YJKTeF3gqxYDlRxzkXu1IoJTN2rD-9C9H6O1QhRnQm2eDhiumN6OFkrugIUgD76GN4IZwHl2wx7VA5Q2Rbe5uiFZu3xhHmPy7Zel9fqkMxhs8BKTVdGKIfVSO4llqpUnP53-sL_e49Kw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083855780</pqid></control><display><type>article</type><title>Exploring Correlation between Labels to improve Multi-Label Classification</title><source>Free E- Journals</source><creator>Garg, Amit ; Noyola, Jonathan ; Verma, Romil ; Saxena, Ashutosh ; Aditya Jami</creator><creatorcontrib>Garg, Amit ; Noyola, Jonathan ; Verma, Romil ; Saxena, Ashutosh ; Aditya Jami</creatorcontrib><description>This paper attempts multi-label classification by extending the idea of independent binary classification models for each output label, and exploring how the inherent correlation between output labels can be used to improve predictions. Logistic Regression, Naive Bayes, Random Forest, and SVM models were constructed, with SVM giving the best results: an improvement of 12.9\% over binary models was achieved for hold out cross validation by augmenting with pairwise correlation probabilities of the labels.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bayesian analysis ; Classification ; Correlation ; Labels</subject><ispartof>arXiv.org, 2015-11</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Garg, Amit</creatorcontrib><creatorcontrib>Noyola, Jonathan</creatorcontrib><creatorcontrib>Verma, Romil</creatorcontrib><creatorcontrib>Saxena, Ashutosh</creatorcontrib><creatorcontrib>Aditya Jami</creatorcontrib><title>Exploring Correlation between Labels to improve Multi-Label Classification</title><title>arXiv.org</title><description>This paper attempts multi-label classification by extending the idea of independent binary classification models for each output label, and exploring how the inherent correlation between output labels can be used to improve predictions. Logistic Regression, Naive Bayes, Random Forest, and SVM models were constructed, with SVM giving the best results: an improvement of 12.9\% over binary models was achieved for hold out cross validation by augmenting with pairwise correlation probabilities of the labels.</description><subject>Bayesian analysis</subject><subject>Classification</subject><subject>Correlation</subject><subject>Labels</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi8EKwjAQBYMgWLT_sOC5EBNjcy8VEb15L1G2khKTmk3Vz7cUP8DTwJs3M5YJKTeF3gqxYDlRxzkXu1IoJTN2rD-9C9H6O1QhRnQm2eDhiumN6OFkrugIUgD76GN4IZwHl2wx7VA5Q2Rbe5uiFZu3xhHmPy7Zel9fqkMxhs8BKTVdGKIfVSO4llqpUnP53-sL_e49Kw</recordid><startdate>20151125</startdate><enddate>20151125</enddate><creator>Garg, Amit</creator><creator>Noyola, Jonathan</creator><creator>Verma, Romil</creator><creator>Saxena, Ashutosh</creator><creator>Aditya Jami</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20151125</creationdate><title>Exploring Correlation between Labels to improve Multi-Label Classification</title><author>Garg, Amit ; Noyola, Jonathan ; Verma, Romil ; Saxena, Ashutosh ; Aditya Jami</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20838557803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bayesian analysis</topic><topic>Classification</topic><topic>Correlation</topic><topic>Labels</topic><toplevel>online_resources</toplevel><creatorcontrib>Garg, Amit</creatorcontrib><creatorcontrib>Noyola, Jonathan</creatorcontrib><creatorcontrib>Verma, Romil</creatorcontrib><creatorcontrib>Saxena, Ashutosh</creatorcontrib><creatorcontrib>Aditya Jami</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garg, Amit</au><au>Noyola, Jonathan</au><au>Verma, Romil</au><au>Saxena, Ashutosh</au><au>Aditya Jami</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Exploring Correlation between Labels to improve Multi-Label Classification</atitle><jtitle>arXiv.org</jtitle><date>2015-11-25</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>This paper attempts multi-label classification by extending the idea of independent binary classification models for each output label, and exploring how the inherent correlation between output labels can be used to improve predictions. Logistic Regression, Naive Bayes, Random Forest, and SVM models were constructed, with SVM giving the best results: an improvement of 12.9\% over binary models was achieved for hold out cross validation by augmenting with pairwise correlation probabilities of the labels.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2015-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2083855780 |
source | Free E- Journals |
subjects | Bayesian analysis Classification Correlation Labels |
title | Exploring Correlation between Labels to improve Multi-Label Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A57%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Exploring%20Correlation%20between%20Labels%20to%20improve%20Multi-Label%20Classification&rft.jtitle=arXiv.org&rft.au=Garg,%20Amit&rft.date=2015-11-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2083855780%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2083855780&rft_id=info:pmid/&rfr_iscdi=true |