Exploring Correlation between Labels to improve Multi-Label Classification

This paper attempts multi-label classification by extending the idea of independent binary classification models for each output label, and exploring how the inherent correlation between output labels can be used to improve predictions. Logistic Regression, Naive Bayes, Random Forest, and SVM models...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2015-11
Hauptverfasser: Garg, Amit, Noyola, Jonathan, Verma, Romil, Saxena, Ashutosh, Aditya Jami
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Garg, Amit
Noyola, Jonathan
Verma, Romil
Saxena, Ashutosh
Aditya Jami
description This paper attempts multi-label classification by extending the idea of independent binary classification models for each output label, and exploring how the inherent correlation between output labels can be used to improve predictions. Logistic Regression, Naive Bayes, Random Forest, and SVM models were constructed, with SVM giving the best results: an improvement of 12.9\% over binary models was achieved for hold out cross validation by augmenting with pairwise correlation probabilities of the labels.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083855780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083855780</sourcerecordid><originalsourceid>FETCH-proquest_journals_20838557803</originalsourceid><addsrcrecordid>eNqNi8EKwjAQBYMgWLT_sOC5EBNjcy8VEb15L1G2khKTmk3Vz7cUP8DTwJs3M5YJKTeF3gqxYDlRxzkXu1IoJTN2rD-9C9H6O1QhRnQm2eDhiumN6OFkrugIUgD76GN4IZwHl2wx7VA5Q2Rbe5uiFZu3xhHmPy7Zel9fqkMxhs8BKTVdGKIfVSO4llqpUnP53-sL_e49Kw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083855780</pqid></control><display><type>article</type><title>Exploring Correlation between Labels to improve Multi-Label Classification</title><source>Free E- Journals</source><creator>Garg, Amit ; Noyola, Jonathan ; Verma, Romil ; Saxena, Ashutosh ; Aditya Jami</creator><creatorcontrib>Garg, Amit ; Noyola, Jonathan ; Verma, Romil ; Saxena, Ashutosh ; Aditya Jami</creatorcontrib><description>This paper attempts multi-label classification by extending the idea of independent binary classification models for each output label, and exploring how the inherent correlation between output labels can be used to improve predictions. Logistic Regression, Naive Bayes, Random Forest, and SVM models were constructed, with SVM giving the best results: an improvement of 12.9\% over binary models was achieved for hold out cross validation by augmenting with pairwise correlation probabilities of the labels.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bayesian analysis ; Classification ; Correlation ; Labels</subject><ispartof>arXiv.org, 2015-11</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Garg, Amit</creatorcontrib><creatorcontrib>Noyola, Jonathan</creatorcontrib><creatorcontrib>Verma, Romil</creatorcontrib><creatorcontrib>Saxena, Ashutosh</creatorcontrib><creatorcontrib>Aditya Jami</creatorcontrib><title>Exploring Correlation between Labels to improve Multi-Label Classification</title><title>arXiv.org</title><description>This paper attempts multi-label classification by extending the idea of independent binary classification models for each output label, and exploring how the inherent correlation between output labels can be used to improve predictions. Logistic Regression, Naive Bayes, Random Forest, and SVM models were constructed, with SVM giving the best results: an improvement of 12.9\% over binary models was achieved for hold out cross validation by augmenting with pairwise correlation probabilities of the labels.</description><subject>Bayesian analysis</subject><subject>Classification</subject><subject>Correlation</subject><subject>Labels</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi8EKwjAQBYMgWLT_sOC5EBNjcy8VEb15L1G2khKTmk3Vz7cUP8DTwJs3M5YJKTeF3gqxYDlRxzkXu1IoJTN2rD-9C9H6O1QhRnQm2eDhiumN6OFkrugIUgD76GN4IZwHl2wx7VA5Q2Rbe5uiFZu3xhHmPy7Zel9fqkMxhs8BKTVdGKIfVSO4llqpUnP53-sL_e49Kw</recordid><startdate>20151125</startdate><enddate>20151125</enddate><creator>Garg, Amit</creator><creator>Noyola, Jonathan</creator><creator>Verma, Romil</creator><creator>Saxena, Ashutosh</creator><creator>Aditya Jami</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20151125</creationdate><title>Exploring Correlation between Labels to improve Multi-Label Classification</title><author>Garg, Amit ; Noyola, Jonathan ; Verma, Romil ; Saxena, Ashutosh ; Aditya Jami</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20838557803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bayesian analysis</topic><topic>Classification</topic><topic>Correlation</topic><topic>Labels</topic><toplevel>online_resources</toplevel><creatorcontrib>Garg, Amit</creatorcontrib><creatorcontrib>Noyola, Jonathan</creatorcontrib><creatorcontrib>Verma, Romil</creatorcontrib><creatorcontrib>Saxena, Ashutosh</creatorcontrib><creatorcontrib>Aditya Jami</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garg, Amit</au><au>Noyola, Jonathan</au><au>Verma, Romil</au><au>Saxena, Ashutosh</au><au>Aditya Jami</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Exploring Correlation between Labels to improve Multi-Label Classification</atitle><jtitle>arXiv.org</jtitle><date>2015-11-25</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>This paper attempts multi-label classification by extending the idea of independent binary classification models for each output label, and exploring how the inherent correlation between output labels can be used to improve predictions. Logistic Regression, Naive Bayes, Random Forest, and SVM models were constructed, with SVM giving the best results: an improvement of 12.9\% over binary models was achieved for hold out cross validation by augmenting with pairwise correlation probabilities of the labels.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2015-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2083855780
source Free E- Journals
subjects Bayesian analysis
Classification
Correlation
Labels
title Exploring Correlation between Labels to improve Multi-Label Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A57%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Exploring%20Correlation%20between%20Labels%20to%20improve%20Multi-Label%20Classification&rft.jtitle=arXiv.org&rft.au=Garg,%20Amit&rft.date=2015-11-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2083855780%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2083855780&rft_id=info:pmid/&rfr_iscdi=true