A refinement of theorems on vertex-disjoint chorded cycles

In 1963, Corrádi and Hajnal settled a conjecture of Erdős by proving that, for all \(k \geq 1\), any graph \(G\) with \(|G| \geq 3k\) and minimum degree at least \(2k\) contains \(k\) vertex-disjoint cycles. In 2008, Finkel proved that for all \(k \geq 1\), any graph \(G\) with \(|G| \geq 4k\) and m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2015-11
Hauptverfasser: Molla, Theodore, Santana, Michael, Yeager, Elyse
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Molla, Theodore
Santana, Michael
Yeager, Elyse
description In 1963, Corrádi and Hajnal settled a conjecture of Erdős by proving that, for all \(k \geq 1\), any graph \(G\) with \(|G| \geq 3k\) and minimum degree at least \(2k\) contains \(k\) vertex-disjoint cycles. In 2008, Finkel proved that for all \(k \geq 1\), any graph \(G\) with \(|G| \geq 4k\) and minimum degree at least \(3k\) contains \(k\) vertex-disjoint chorded cycles. Finkel's result was strengthened by Chiba, Fujita, Gao, and Li in 2010, who showed, among other results, that for all \(k \geq 1\), any graph \(G\) with \(|G| \geq 4k\) and minimum Ore-degree at least \(6k-1\) contains \(k\) vertex-disjoint cycles. We refine this result, characterizing the graphs \(G\) with \(|G| \geq 4k\) and minimum Ore-degree at least \(6k-2\) that do not have \(k\) disjoint chorded cycles.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083849699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083849699</sourcerecordid><originalsourceid>FETCH-proquest_journals_20838496993</originalsourceid><addsrcrecordid>eNqNykEKwjAQQNEgCBbtHQKuC3HS1tadiOIB3BdpJjSlzWgmFb29XXgAV3_x_kIkoPUuq3KAlUiZe6UUlHsoCp2Iw1EGtM7jiD5KsjJ2SAFHluTlC0PEd2Yc9-RmbjsKBo1sP-2AvBFLex8Y01_XYns5307X7BHoOSHHpqcp-JkaUJWu8rqsa_3f9QXSFzcl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083849699</pqid></control><display><type>article</type><title>A refinement of theorems on vertex-disjoint chorded cycles</title><source>Free E- Journals</source><creator>Molla, Theodore ; Santana, Michael ; Yeager, Elyse</creator><creatorcontrib>Molla, Theodore ; Santana, Michael ; Yeager, Elyse</creatorcontrib><description>In 1963, Corrádi and Hajnal settled a conjecture of Erdős by proving that, for all \(k \geq 1\), any graph \(G\) with \(|G| \geq 3k\) and minimum degree at least \(2k\) contains \(k\) vertex-disjoint cycles. In 2008, Finkel proved that for all \(k \geq 1\), any graph \(G\) with \(|G| \geq 4k\) and minimum degree at least \(3k\) contains \(k\) vertex-disjoint chorded cycles. Finkel's result was strengthened by Chiba, Fujita, Gao, and Li in 2010, who showed, among other results, that for all \(k \geq 1\), any graph \(G\) with \(|G| \geq 4k\) and minimum Ore-degree at least \(6k-1\) contains \(k\) vertex-disjoint cycles. We refine this result, characterizing the graphs \(G\) with \(|G| \geq 4k\) and minimum Ore-degree at least \(6k-2\) that do not have \(k\) disjoint chorded cycles.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><ispartof>arXiv.org, 2015-11</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Molla, Theodore</creatorcontrib><creatorcontrib>Santana, Michael</creatorcontrib><creatorcontrib>Yeager, Elyse</creatorcontrib><title>A refinement of theorems on vertex-disjoint chorded cycles</title><title>arXiv.org</title><description>In 1963, Corrádi and Hajnal settled a conjecture of Erdős by proving that, for all \(k \geq 1\), any graph \(G\) with \(|G| \geq 3k\) and minimum degree at least \(2k\) contains \(k\) vertex-disjoint cycles. In 2008, Finkel proved that for all \(k \geq 1\), any graph \(G\) with \(|G| \geq 4k\) and minimum degree at least \(3k\) contains \(k\) vertex-disjoint chorded cycles. Finkel's result was strengthened by Chiba, Fujita, Gao, and Li in 2010, who showed, among other results, that for all \(k \geq 1\), any graph \(G\) with \(|G| \geq 4k\) and minimum Ore-degree at least \(6k-1\) contains \(k\) vertex-disjoint cycles. We refine this result, characterizing the graphs \(G\) with \(|G| \geq 4k\) and minimum Ore-degree at least \(6k-2\) that do not have \(k\) disjoint chorded cycles.</description><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNykEKwjAQQNEgCBbtHQKuC3HS1tadiOIB3BdpJjSlzWgmFb29XXgAV3_x_kIkoPUuq3KAlUiZe6UUlHsoCp2Iw1EGtM7jiD5KsjJ2SAFHluTlC0PEd2Yc9-RmbjsKBo1sP-2AvBFLex8Y01_XYns5307X7BHoOSHHpqcp-JkaUJWu8rqsa_3f9QXSFzcl</recordid><startdate>20151113</startdate><enddate>20151113</enddate><creator>Molla, Theodore</creator><creator>Santana, Michael</creator><creator>Yeager, Elyse</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20151113</creationdate><title>A refinement of theorems on vertex-disjoint chorded cycles</title><author>Molla, Theodore ; Santana, Michael ; Yeager, Elyse</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20838496993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Molla, Theodore</creatorcontrib><creatorcontrib>Santana, Michael</creatorcontrib><creatorcontrib>Yeager, Elyse</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Molla, Theodore</au><au>Santana, Michael</au><au>Yeager, Elyse</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A refinement of theorems on vertex-disjoint chorded cycles</atitle><jtitle>arXiv.org</jtitle><date>2015-11-13</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>In 1963, Corrádi and Hajnal settled a conjecture of Erdős by proving that, for all \(k \geq 1\), any graph \(G\) with \(|G| \geq 3k\) and minimum degree at least \(2k\) contains \(k\) vertex-disjoint cycles. In 2008, Finkel proved that for all \(k \geq 1\), any graph \(G\) with \(|G| \geq 4k\) and minimum degree at least \(3k\) contains \(k\) vertex-disjoint chorded cycles. Finkel's result was strengthened by Chiba, Fujita, Gao, and Li in 2010, who showed, among other results, that for all \(k \geq 1\), any graph \(G\) with \(|G| \geq 4k\) and minimum Ore-degree at least \(6k-1\) contains \(k\) vertex-disjoint cycles. We refine this result, characterizing the graphs \(G\) with \(|G| \geq 4k\) and minimum Ore-degree at least \(6k-2\) that do not have \(k\) disjoint chorded cycles.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2015-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2083849699
source Free E- Journals
title A refinement of theorems on vertex-disjoint chorded cycles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T20%3A05%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20refinement%20of%20theorems%20on%20vertex-disjoint%20chorded%20cycles&rft.jtitle=arXiv.org&rft.au=Molla,%20Theodore&rft.date=2015-11-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2083849699%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2083849699&rft_id=info:pmid/&rfr_iscdi=true