Förster energy transfer of dark excitons enhanced by a magnetic field in an ensemble of CdTe colloidal nanocrystals

We present a systematic experimental study along with theoretical modeling of the energy transfer in an ensemble of closely-packed CdTe colloidal nanocrystals identified as the F\"orster resonant energy transfer (FRET). We prove that at low temperature of 4.2 K, mainly the ground dark exciton s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2015-12
Hauptverfasser: Liu, Feng, Rodina, A V, Yakovlev, D R, Golovatenko, A A, Greilich, A, Vakhtin, E D, A Susha, Rogach, A L, Kusrayev, Yu G, Bayer, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Liu, Feng
Rodina, A V
Yakovlev, D R
Golovatenko, A A
Greilich, A
Vakhtin, E D
A Susha
Rogach, A L
Kusrayev, Yu G
Bayer, M
description We present a systematic experimental study along with theoretical modeling of the energy transfer in an ensemble of closely-packed CdTe colloidal nanocrystals identified as the F\"orster resonant energy transfer (FRET). We prove that at low temperature of 4.2 K, mainly the ground dark exciton states in the initially excited small-size (donor) nanocrystals participate in the dipole-dipole FRET leading to additional excitation of the large-size (acceptor) nanocrystals. The FRET becomes possible due to the weak admixture of the bright exciton states to the dark states. The admixture takes place even in zero magnetic field and allows the radiative recombination of the dark excitons. An external magnetic field considerably enhances this admixture, thus increasing the energy transfer rate by a factor of 2-3 in a field of 15T, as well as the radiative rates of the dark excitons in the donor and acceptor nanocrystals. The theoretical modeling allows us to determine the spectral dependence of the probability for the NC to serve as a donor for larger nanocrystals, to evaluate the energy transfer rates as well as to predict their dependencies on the magnetic field, to describe the spectral shift of the photoluminescence maximum due to the energy transfer and to reproduce the experimentally observed spectral dependencies of the photoluminescence recombination dynamics in the magnetic field.
doi_str_mv 10.48550/arxiv.1512.06545
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083826065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083826065</sourcerecordid><originalsourceid>FETCH-proquest_journals_20838260653</originalsourceid><addsrcrecordid>eNqNj0FOwzAQRa1KSFTQA7AbiXWDY8ch-4qqB-i-mtqT4uKOwXar5mJcoBfDSByA1dPXf3_xhXhqZdMNxsgXTFd_aVrTqkb2pjMzMVdat8uhU-peLHI-SilV_6qM0XNR1rfvlAslIKZ0mKAk5DzWHEdwmD6ArtaXyLkK78iWHOwnQDjhgal4C6On4MAzIFcl02kf6He8clsCG0OI3mEARo42TblgyI_ibqygxR8fxPP6bbvaLD9T_DpTLrtjPCeu1U7JQQ-qr0_0_6wfvYtTEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083826065</pqid></control><display><type>article</type><title>Förster energy transfer of dark excitons enhanced by a magnetic field in an ensemble of CdTe colloidal nanocrystals</title><source>Free E- Journals</source><creator>Liu, Feng ; Rodina, A V ; Yakovlev, D R ; Golovatenko, A A ; Greilich, A ; Vakhtin, E D ; A Susha ; Rogach, A L ; Kusrayev, Yu G ; Bayer, M</creator><creatorcontrib>Liu, Feng ; Rodina, A V ; Yakovlev, D R ; Golovatenko, A A ; Greilich, A ; Vakhtin, E D ; A Susha ; Rogach, A L ; Kusrayev, Yu G ; Bayer, M</creatorcontrib><description>We present a systematic experimental study along with theoretical modeling of the energy transfer in an ensemble of closely-packed CdTe colloidal nanocrystals identified as the F\"orster resonant energy transfer (FRET). We prove that at low temperature of 4.2 K, mainly the ground dark exciton states in the initially excited small-size (donor) nanocrystals participate in the dipole-dipole FRET leading to additional excitation of the large-size (acceptor) nanocrystals. The FRET becomes possible due to the weak admixture of the bright exciton states to the dark states. The admixture takes place even in zero magnetic field and allows the radiative recombination of the dark excitons. An external magnetic field considerably enhances this admixture, thus increasing the energy transfer rate by a factor of 2-3 in a field of 15T, as well as the radiative rates of the dark excitons in the donor and acceptor nanocrystals. The theoretical modeling allows us to determine the spectral dependence of the probability for the NC to serve as a donor for larger nanocrystals, to evaluate the energy transfer rates as well as to predict their dependencies on the magnetic field, to describe the spectral shift of the photoluminescence maximum due to the energy transfer and to reproduce the experimentally observed spectral dependencies of the photoluminescence recombination dynamics in the magnetic field.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1512.06545</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Admixtures ; Dependence ; Dipoles ; Energy ; Energy transfer ; Excitons ; Magnetic fields ; Modelling ; Nanocrystals ; Photoluminescence ; Radiative recombination ; Spectra</subject><ispartof>arXiv.org, 2015-12</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784,27925</link.rule.ids></links><search><creatorcontrib>Liu, Feng</creatorcontrib><creatorcontrib>Rodina, A V</creatorcontrib><creatorcontrib>Yakovlev, D R</creatorcontrib><creatorcontrib>Golovatenko, A A</creatorcontrib><creatorcontrib>Greilich, A</creatorcontrib><creatorcontrib>Vakhtin, E D</creatorcontrib><creatorcontrib>A Susha</creatorcontrib><creatorcontrib>Rogach, A L</creatorcontrib><creatorcontrib>Kusrayev, Yu G</creatorcontrib><creatorcontrib>Bayer, M</creatorcontrib><title>Förster energy transfer of dark excitons enhanced by a magnetic field in an ensemble of CdTe colloidal nanocrystals</title><title>arXiv.org</title><description>We present a systematic experimental study along with theoretical modeling of the energy transfer in an ensemble of closely-packed CdTe colloidal nanocrystals identified as the F\"orster resonant energy transfer (FRET). We prove that at low temperature of 4.2 K, mainly the ground dark exciton states in the initially excited small-size (donor) nanocrystals participate in the dipole-dipole FRET leading to additional excitation of the large-size (acceptor) nanocrystals. The FRET becomes possible due to the weak admixture of the bright exciton states to the dark states. The admixture takes place even in zero magnetic field and allows the radiative recombination of the dark excitons. An external magnetic field considerably enhances this admixture, thus increasing the energy transfer rate by a factor of 2-3 in a field of 15T, as well as the radiative rates of the dark excitons in the donor and acceptor nanocrystals. The theoretical modeling allows us to determine the spectral dependence of the probability for the NC to serve as a donor for larger nanocrystals, to evaluate the energy transfer rates as well as to predict their dependencies on the magnetic field, to describe the spectral shift of the photoluminescence maximum due to the energy transfer and to reproduce the experimentally observed spectral dependencies of the photoluminescence recombination dynamics in the magnetic field.</description><subject>Admixtures</subject><subject>Dependence</subject><subject>Dipoles</subject><subject>Energy</subject><subject>Energy transfer</subject><subject>Excitons</subject><subject>Magnetic fields</subject><subject>Modelling</subject><subject>Nanocrystals</subject><subject>Photoluminescence</subject><subject>Radiative recombination</subject><subject>Spectra</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNj0FOwzAQRa1KSFTQA7AbiXWDY8ch-4qqB-i-mtqT4uKOwXar5mJcoBfDSByA1dPXf3_xhXhqZdMNxsgXTFd_aVrTqkb2pjMzMVdat8uhU-peLHI-SilV_6qM0XNR1rfvlAslIKZ0mKAk5DzWHEdwmD6ArtaXyLkK78iWHOwnQDjhgal4C6On4MAzIFcl02kf6He8clsCG0OI3mEARo42TblgyI_ibqygxR8fxPP6bbvaLD9T_DpTLrtjPCeu1U7JQQ-qr0_0_6wfvYtTEw</recordid><startdate>20151221</startdate><enddate>20151221</enddate><creator>Liu, Feng</creator><creator>Rodina, A V</creator><creator>Yakovlev, D R</creator><creator>Golovatenko, A A</creator><creator>Greilich, A</creator><creator>Vakhtin, E D</creator><creator>A Susha</creator><creator>Rogach, A L</creator><creator>Kusrayev, Yu G</creator><creator>Bayer, M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20151221</creationdate><title>Förster energy transfer of dark excitons enhanced by a magnetic field in an ensemble of CdTe colloidal nanocrystals</title><author>Liu, Feng ; Rodina, A V ; Yakovlev, D R ; Golovatenko, A A ; Greilich, A ; Vakhtin, E D ; A Susha ; Rogach, A L ; Kusrayev, Yu G ; Bayer, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20838260653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Admixtures</topic><topic>Dependence</topic><topic>Dipoles</topic><topic>Energy</topic><topic>Energy transfer</topic><topic>Excitons</topic><topic>Magnetic fields</topic><topic>Modelling</topic><topic>Nanocrystals</topic><topic>Photoluminescence</topic><topic>Radiative recombination</topic><topic>Spectra</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Feng</creatorcontrib><creatorcontrib>Rodina, A V</creatorcontrib><creatorcontrib>Yakovlev, D R</creatorcontrib><creatorcontrib>Golovatenko, A A</creatorcontrib><creatorcontrib>Greilich, A</creatorcontrib><creatorcontrib>Vakhtin, E D</creatorcontrib><creatorcontrib>A Susha</creatorcontrib><creatorcontrib>Rogach, A L</creatorcontrib><creatorcontrib>Kusrayev, Yu G</creatorcontrib><creatorcontrib>Bayer, M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Feng</au><au>Rodina, A V</au><au>Yakovlev, D R</au><au>Golovatenko, A A</au><au>Greilich, A</au><au>Vakhtin, E D</au><au>A Susha</au><au>Rogach, A L</au><au>Kusrayev, Yu G</au><au>Bayer, M</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Förster energy transfer of dark excitons enhanced by a magnetic field in an ensemble of CdTe colloidal nanocrystals</atitle><jtitle>arXiv.org</jtitle><date>2015-12-21</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>We present a systematic experimental study along with theoretical modeling of the energy transfer in an ensemble of closely-packed CdTe colloidal nanocrystals identified as the F\"orster resonant energy transfer (FRET). We prove that at low temperature of 4.2 K, mainly the ground dark exciton states in the initially excited small-size (donor) nanocrystals participate in the dipole-dipole FRET leading to additional excitation of the large-size (acceptor) nanocrystals. The FRET becomes possible due to the weak admixture of the bright exciton states to the dark states. The admixture takes place even in zero magnetic field and allows the radiative recombination of the dark excitons. An external magnetic field considerably enhances this admixture, thus increasing the energy transfer rate by a factor of 2-3 in a field of 15T, as well as the radiative rates of the dark excitons in the donor and acceptor nanocrystals. The theoretical modeling allows us to determine the spectral dependence of the probability for the NC to serve as a donor for larger nanocrystals, to evaluate the energy transfer rates as well as to predict their dependencies on the magnetic field, to describe the spectral shift of the photoluminescence maximum due to the energy transfer and to reproduce the experimentally observed spectral dependencies of the photoluminescence recombination dynamics in the magnetic field.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1512.06545</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2015-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2083826065
source Free E- Journals
subjects Admixtures
Dependence
Dipoles
Energy
Energy transfer
Excitons
Magnetic fields
Modelling
Nanocrystals
Photoluminescence
Radiative recombination
Spectra
title Förster energy transfer of dark excitons enhanced by a magnetic field in an ensemble of CdTe colloidal nanocrystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A23%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=F%C3%B6rster%20energy%20transfer%20of%20dark%20excitons%20enhanced%20by%20a%20magnetic%20field%20in%20an%20ensemble%20of%20CdTe%20colloidal%20nanocrystals&rft.jtitle=arXiv.org&rft.au=Liu,%20Feng&rft.date=2015-12-21&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1512.06545&rft_dat=%3Cproquest%3E2083826065%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2083826065&rft_id=info:pmid/&rfr_iscdi=true