Enhanced oil recovery by hydrophobins from Lecanicillium lecanii
•L. Lecanii produces hydrophobins in an 8.8L scale bioreactor.•Hydrophobins form stable oil in water emulsions.•Surface tension is preserved under aggressive oil well conditions.•Hydrophobins show 14% oil recovery. The hydrophobins (HFB)s are a class of proteins with high surface tension and thermos...
Gespeichert in:
Veröffentlicht in: | Fuel (Guildford) 2018-07, Vol.224, p.10-16 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16 |
---|---|
container_issue | |
container_start_page | 10 |
container_title | Fuel (Guildford) |
container_volume | 224 |
creator | Rocha-Pino, Zaizy Ramos-López, Jesús I. Gimeno, Miquel Barragán-Aroche, Fernando Durán-Valencia, Cecilia López-Ramírez, Simón Shirai, Keiko |
description | •L. Lecanii produces hydrophobins in an 8.8L scale bioreactor.•Hydrophobins form stable oil in water emulsions.•Surface tension is preserved under aggressive oil well conditions.•Hydrophobins show 14% oil recovery.
The hydrophobins (HFB)s are a class of proteins with high surface tension and thermostability which potential application in enhanced oil recovery (EOR). The entomopathogenic fungus Lecanicillium lecanii produced HFBs in an 8.8L-scale solid-state fermentation using polyurethane foams as inert support in three configurations. Additionally, crude enzyme with lipase activity was also produced and tested for EOR individually or in combination with HFBs. The polyurethane foam support in cubes attained the highest yield of class I HFB (17.3 ± 1%) and the highest lipase activity (3.6 ± 0.2 U/mg protein). These HFBs formed stable oil–water emulsions displaying an interfacial tension up to 7.6 ± 0.3 mN/m. The proteins were used in limestone cores under tertiary recovery oil well conditions to achieve up to 14% recovery. |
doi_str_mv | 10.1016/j.fuel.2018.03.058 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2083808427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236118304642</els_id><sourcerecordid>2083808427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-df23ba0506e2666428ad3314fd3be5f352a4dd0438384e49fcea1c910b8776a43</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gKuC69aTS9MMuFAGbzDgRtchzYVJ6TRjMh3o25s6rl0dDvzffw4fQrcYKgyY33eVG21fEcCiAlpBLc7QAouGlg2u6TlaQE6VhHJ8ia5S6gCgETVboMfnYasGbU0RfF9Eq8PRxqlop2I7mRj229D6IRUuhl2xsVoNXvu-9-Ou6H83f40unOqTvfmbS_T18vy5fis3H6_v66dNqSmvD6VxhLYKauCWcM4ZEcpQipkztLW1ozVRzBhgVFDBLFs5bRXWKwytaBquGF2iu1PvPobv0aaD7MIYh3xSEsgQCEaanCKnlI4hpWid3Ee_U3GSGORsSnZyNiVnUxKozKYy9HCCbP7_6G2USXs7S_FZyEGa4P_DfwB2vnFU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083808427</pqid></control><display><type>article</type><title>Enhanced oil recovery by hydrophobins from Lecanicillium lecanii</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Rocha-Pino, Zaizy ; Ramos-López, Jesús I. ; Gimeno, Miquel ; Barragán-Aroche, Fernando ; Durán-Valencia, Cecilia ; López-Ramírez, Simón ; Shirai, Keiko</creator><creatorcontrib>Rocha-Pino, Zaizy ; Ramos-López, Jesús I. ; Gimeno, Miquel ; Barragán-Aroche, Fernando ; Durán-Valencia, Cecilia ; López-Ramírez, Simón ; Shirai, Keiko</creatorcontrib><description>•L. Lecanii produces hydrophobins in an 8.8L scale bioreactor.•Hydrophobins form stable oil in water emulsions.•Surface tension is preserved under aggressive oil well conditions.•Hydrophobins show 14% oil recovery.
The hydrophobins (HFB)s are a class of proteins with high surface tension and thermostability which potential application in enhanced oil recovery (EOR). The entomopathogenic fungus Lecanicillium lecanii produced HFBs in an 8.8L-scale solid-state fermentation using polyurethane foams as inert support in three configurations. Additionally, crude enzyme with lipase activity was also produced and tested for EOR individually or in combination with HFBs. The polyurethane foam support in cubes attained the highest yield of class I HFB (17.3 ± 1%) and the highest lipase activity (3.6 ± 0.2 U/mg protein). These HFBs formed stable oil–water emulsions displaying an interfacial tension up to 7.6 ± 0.3 mN/m. The proteins were used in limestone cores under tertiary recovery oil well conditions to achieve up to 14% recovery.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2018.03.058</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Cubes ; Emulsions ; Enhanced oil recovery ; Entomopathogenic fungi ; Fermentation ; Foams ; Fungi ; Hydrophobins ; Interfacial activity ; Lecanicillium lecanii ; Limestone ; Lipase ; Lipases ; Oil recovery ; Plastic foam ; Polyurethane ; Polyurethane foam ; Proteins ; Solid state fermentation ; Surface tension ; Tension ; Thermal stability</subject><ispartof>Fuel (Guildford), 2018-07, Vol.224, p.10-16</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-df23ba0506e2666428ad3314fd3be5f352a4dd0438384e49fcea1c910b8776a43</citedby><cites>FETCH-LOGICAL-c365t-df23ba0506e2666428ad3314fd3be5f352a4dd0438384e49fcea1c910b8776a43</cites><orcidid>0000-0001-6965-131X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0016236118304642$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Rocha-Pino, Zaizy</creatorcontrib><creatorcontrib>Ramos-López, Jesús I.</creatorcontrib><creatorcontrib>Gimeno, Miquel</creatorcontrib><creatorcontrib>Barragán-Aroche, Fernando</creatorcontrib><creatorcontrib>Durán-Valencia, Cecilia</creatorcontrib><creatorcontrib>López-Ramírez, Simón</creatorcontrib><creatorcontrib>Shirai, Keiko</creatorcontrib><title>Enhanced oil recovery by hydrophobins from Lecanicillium lecanii</title><title>Fuel (Guildford)</title><description>•L. Lecanii produces hydrophobins in an 8.8L scale bioreactor.•Hydrophobins form stable oil in water emulsions.•Surface tension is preserved under aggressive oil well conditions.•Hydrophobins show 14% oil recovery.
The hydrophobins (HFB)s are a class of proteins with high surface tension and thermostability which potential application in enhanced oil recovery (EOR). The entomopathogenic fungus Lecanicillium lecanii produced HFBs in an 8.8L-scale solid-state fermentation using polyurethane foams as inert support in three configurations. Additionally, crude enzyme with lipase activity was also produced and tested for EOR individually or in combination with HFBs. The polyurethane foam support in cubes attained the highest yield of class I HFB (17.3 ± 1%) and the highest lipase activity (3.6 ± 0.2 U/mg protein). These HFBs formed stable oil–water emulsions displaying an interfacial tension up to 7.6 ± 0.3 mN/m. The proteins were used in limestone cores under tertiary recovery oil well conditions to achieve up to 14% recovery.</description><subject>Cubes</subject><subject>Emulsions</subject><subject>Enhanced oil recovery</subject><subject>Entomopathogenic fungi</subject><subject>Fermentation</subject><subject>Foams</subject><subject>Fungi</subject><subject>Hydrophobins</subject><subject>Interfacial activity</subject><subject>Lecanicillium lecanii</subject><subject>Limestone</subject><subject>Lipase</subject><subject>Lipases</subject><subject>Oil recovery</subject><subject>Plastic foam</subject><subject>Polyurethane</subject><subject>Polyurethane foam</subject><subject>Proteins</subject><subject>Solid state fermentation</subject><subject>Surface tension</subject><subject>Tension</subject><subject>Thermal stability</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI6-gKuC69aTS9MMuFAGbzDgRtchzYVJ6TRjMh3o25s6rl0dDvzffw4fQrcYKgyY33eVG21fEcCiAlpBLc7QAouGlg2u6TlaQE6VhHJ8ia5S6gCgETVboMfnYasGbU0RfF9Eq8PRxqlop2I7mRj229D6IRUuhl2xsVoNXvu-9-Ou6H83f40unOqTvfmbS_T18vy5fis3H6_v66dNqSmvD6VxhLYKauCWcM4ZEcpQipkztLW1ozVRzBhgVFDBLFs5bRXWKwytaBquGF2iu1PvPobv0aaD7MIYh3xSEsgQCEaanCKnlI4hpWid3Ee_U3GSGORsSnZyNiVnUxKozKYy9HCCbP7_6G2USXs7S_FZyEGa4P_DfwB2vnFU</recordid><startdate>20180715</startdate><enddate>20180715</enddate><creator>Rocha-Pino, Zaizy</creator><creator>Ramos-López, Jesús I.</creator><creator>Gimeno, Miquel</creator><creator>Barragán-Aroche, Fernando</creator><creator>Durán-Valencia, Cecilia</creator><creator>López-Ramírez, Simón</creator><creator>Shirai, Keiko</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-6965-131X</orcidid></search><sort><creationdate>20180715</creationdate><title>Enhanced oil recovery by hydrophobins from Lecanicillium lecanii</title><author>Rocha-Pino, Zaizy ; Ramos-López, Jesús I. ; Gimeno, Miquel ; Barragán-Aroche, Fernando ; Durán-Valencia, Cecilia ; López-Ramírez, Simón ; Shirai, Keiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-df23ba0506e2666428ad3314fd3be5f352a4dd0438384e49fcea1c910b8776a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cubes</topic><topic>Emulsions</topic><topic>Enhanced oil recovery</topic><topic>Entomopathogenic fungi</topic><topic>Fermentation</topic><topic>Foams</topic><topic>Fungi</topic><topic>Hydrophobins</topic><topic>Interfacial activity</topic><topic>Lecanicillium lecanii</topic><topic>Limestone</topic><topic>Lipase</topic><topic>Lipases</topic><topic>Oil recovery</topic><topic>Plastic foam</topic><topic>Polyurethane</topic><topic>Polyurethane foam</topic><topic>Proteins</topic><topic>Solid state fermentation</topic><topic>Surface tension</topic><topic>Tension</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rocha-Pino, Zaizy</creatorcontrib><creatorcontrib>Ramos-López, Jesús I.</creatorcontrib><creatorcontrib>Gimeno, Miquel</creatorcontrib><creatorcontrib>Barragán-Aroche, Fernando</creatorcontrib><creatorcontrib>Durán-Valencia, Cecilia</creatorcontrib><creatorcontrib>López-Ramírez, Simón</creatorcontrib><creatorcontrib>Shirai, Keiko</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rocha-Pino, Zaizy</au><au>Ramos-López, Jesús I.</au><au>Gimeno, Miquel</au><au>Barragán-Aroche, Fernando</au><au>Durán-Valencia, Cecilia</au><au>López-Ramírez, Simón</au><au>Shirai, Keiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced oil recovery by hydrophobins from Lecanicillium lecanii</atitle><jtitle>Fuel (Guildford)</jtitle><date>2018-07-15</date><risdate>2018</risdate><volume>224</volume><spage>10</spage><epage>16</epage><pages>10-16</pages><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>•L. Lecanii produces hydrophobins in an 8.8L scale bioreactor.•Hydrophobins form stable oil in water emulsions.•Surface tension is preserved under aggressive oil well conditions.•Hydrophobins show 14% oil recovery.
The hydrophobins (HFB)s are a class of proteins with high surface tension and thermostability which potential application in enhanced oil recovery (EOR). The entomopathogenic fungus Lecanicillium lecanii produced HFBs in an 8.8L-scale solid-state fermentation using polyurethane foams as inert support in three configurations. Additionally, crude enzyme with lipase activity was also produced and tested for EOR individually or in combination with HFBs. The polyurethane foam support in cubes attained the highest yield of class I HFB (17.3 ± 1%) and the highest lipase activity (3.6 ± 0.2 U/mg protein). These HFBs formed stable oil–water emulsions displaying an interfacial tension up to 7.6 ± 0.3 mN/m. The proteins were used in limestone cores under tertiary recovery oil well conditions to achieve up to 14% recovery.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2018.03.058</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6965-131X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-2361 |
ispartof | Fuel (Guildford), 2018-07, Vol.224, p.10-16 |
issn | 0016-2361 1873-7153 |
language | eng |
recordid | cdi_proquest_journals_2083808427 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Cubes Emulsions Enhanced oil recovery Entomopathogenic fungi Fermentation Foams Fungi Hydrophobins Interfacial activity Lecanicillium lecanii Limestone Lipase Lipases Oil recovery Plastic foam Polyurethane Polyurethane foam Proteins Solid state fermentation Surface tension Tension Thermal stability |
title | Enhanced oil recovery by hydrophobins from Lecanicillium lecanii |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T08%3A47%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20oil%20recovery%20by%20hydrophobins%20from%20Lecanicillium%20lecanii&rft.jtitle=Fuel%20(Guildford)&rft.au=Rocha-Pino,%20Zaizy&rft.date=2018-07-15&rft.volume=224&rft.spage=10&rft.epage=16&rft.pages=10-16&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2018.03.058&rft_dat=%3Cproquest_cross%3E2083808427%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2083808427&rft_id=info:pmid/&rft_els_id=S0016236118304642&rfr_iscdi=true |