Enhanced oil recovery by hydrophobins from Lecanicillium lecanii

•L. Lecanii produces hydrophobins in an 8.8L scale bioreactor.•Hydrophobins form stable oil in water emulsions.•Surface tension is preserved under aggressive oil well conditions.•Hydrophobins show 14% oil recovery. The hydrophobins (HFB)s are a class of proteins with high surface tension and thermos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel (Guildford) 2018-07, Vol.224, p.10-16
Hauptverfasser: Rocha-Pino, Zaizy, Ramos-López, Jesús I., Gimeno, Miquel, Barragán-Aroche, Fernando, Durán-Valencia, Cecilia, López-Ramírez, Simón, Shirai, Keiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16
container_issue
container_start_page 10
container_title Fuel (Guildford)
container_volume 224
creator Rocha-Pino, Zaizy
Ramos-López, Jesús I.
Gimeno, Miquel
Barragán-Aroche, Fernando
Durán-Valencia, Cecilia
López-Ramírez, Simón
Shirai, Keiko
description •L. Lecanii produces hydrophobins in an 8.8L scale bioreactor.•Hydrophobins form stable oil in water emulsions.•Surface tension is preserved under aggressive oil well conditions.•Hydrophobins show 14% oil recovery. The hydrophobins (HFB)s are a class of proteins with high surface tension and thermostability which potential application in enhanced oil recovery (EOR). The entomopathogenic fungus Lecanicillium lecanii produced HFBs in an 8.8L-scale solid-state fermentation using polyurethane foams as inert support in three configurations. Additionally, crude enzyme with lipase activity was also produced and tested for EOR individually or in combination with HFBs. The polyurethane foam support in cubes attained the highest yield of class I HFB (17.3 ± 1%) and the highest lipase activity (3.6 ± 0.2 U/mg protein). These HFBs formed stable oil–water emulsions displaying an interfacial tension up to 7.6 ± 0.3 mN/m. The proteins were used in limestone cores under tertiary recovery oil well conditions to achieve up to 14% recovery.
doi_str_mv 10.1016/j.fuel.2018.03.058
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2083808427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236118304642</els_id><sourcerecordid>2083808427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-df23ba0506e2666428ad3314fd3be5f352a4dd0438384e49fcea1c910b8776a43</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI6-gKuC69aTS9MMuFAGbzDgRtchzYVJ6TRjMh3o25s6rl0dDvzffw4fQrcYKgyY33eVG21fEcCiAlpBLc7QAouGlg2u6TlaQE6VhHJ8ia5S6gCgETVboMfnYasGbU0RfF9Eq8PRxqlop2I7mRj229D6IRUuhl2xsVoNXvu-9-Ou6H83f40unOqTvfmbS_T18vy5fis3H6_v66dNqSmvD6VxhLYKauCWcM4ZEcpQipkztLW1ozVRzBhgVFDBLFs5bRXWKwytaBquGF2iu1PvPobv0aaD7MIYh3xSEsgQCEaanCKnlI4hpWid3Ee_U3GSGORsSnZyNiVnUxKozKYy9HCCbP7_6G2USXs7S_FZyEGa4P_DfwB2vnFU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083808427</pqid></control><display><type>article</type><title>Enhanced oil recovery by hydrophobins from Lecanicillium lecanii</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Rocha-Pino, Zaizy ; Ramos-López, Jesús I. ; Gimeno, Miquel ; Barragán-Aroche, Fernando ; Durán-Valencia, Cecilia ; López-Ramírez, Simón ; Shirai, Keiko</creator><creatorcontrib>Rocha-Pino, Zaizy ; Ramos-López, Jesús I. ; Gimeno, Miquel ; Barragán-Aroche, Fernando ; Durán-Valencia, Cecilia ; López-Ramírez, Simón ; Shirai, Keiko</creatorcontrib><description>•L. Lecanii produces hydrophobins in an 8.8L scale bioreactor.•Hydrophobins form stable oil in water emulsions.•Surface tension is preserved under aggressive oil well conditions.•Hydrophobins show 14% oil recovery. The hydrophobins (HFB)s are a class of proteins with high surface tension and thermostability which potential application in enhanced oil recovery (EOR). The entomopathogenic fungus Lecanicillium lecanii produced HFBs in an 8.8L-scale solid-state fermentation using polyurethane foams as inert support in three configurations. Additionally, crude enzyme with lipase activity was also produced and tested for EOR individually or in combination with HFBs. The polyurethane foam support in cubes attained the highest yield of class I HFB (17.3 ± 1%) and the highest lipase activity (3.6 ± 0.2 U/mg protein). These HFBs formed stable oil–water emulsions displaying an interfacial tension up to 7.6 ± 0.3 mN/m. The proteins were used in limestone cores under tertiary recovery oil well conditions to achieve up to 14% recovery.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2018.03.058</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Cubes ; Emulsions ; Enhanced oil recovery ; Entomopathogenic fungi ; Fermentation ; Foams ; Fungi ; Hydrophobins ; Interfacial activity ; Lecanicillium lecanii ; Limestone ; Lipase ; Lipases ; Oil recovery ; Plastic foam ; Polyurethane ; Polyurethane foam ; Proteins ; Solid state fermentation ; Surface tension ; Tension ; Thermal stability</subject><ispartof>Fuel (Guildford), 2018-07, Vol.224, p.10-16</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-df23ba0506e2666428ad3314fd3be5f352a4dd0438384e49fcea1c910b8776a43</citedby><cites>FETCH-LOGICAL-c365t-df23ba0506e2666428ad3314fd3be5f352a4dd0438384e49fcea1c910b8776a43</cites><orcidid>0000-0001-6965-131X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0016236118304642$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Rocha-Pino, Zaizy</creatorcontrib><creatorcontrib>Ramos-López, Jesús I.</creatorcontrib><creatorcontrib>Gimeno, Miquel</creatorcontrib><creatorcontrib>Barragán-Aroche, Fernando</creatorcontrib><creatorcontrib>Durán-Valencia, Cecilia</creatorcontrib><creatorcontrib>López-Ramírez, Simón</creatorcontrib><creatorcontrib>Shirai, Keiko</creatorcontrib><title>Enhanced oil recovery by hydrophobins from Lecanicillium lecanii</title><title>Fuel (Guildford)</title><description>•L. Lecanii produces hydrophobins in an 8.8L scale bioreactor.•Hydrophobins form stable oil in water emulsions.•Surface tension is preserved under aggressive oil well conditions.•Hydrophobins show 14% oil recovery. The hydrophobins (HFB)s are a class of proteins with high surface tension and thermostability which potential application in enhanced oil recovery (EOR). The entomopathogenic fungus Lecanicillium lecanii produced HFBs in an 8.8L-scale solid-state fermentation using polyurethane foams as inert support in three configurations. Additionally, crude enzyme with lipase activity was also produced and tested for EOR individually or in combination with HFBs. The polyurethane foam support in cubes attained the highest yield of class I HFB (17.3 ± 1%) and the highest lipase activity (3.6 ± 0.2 U/mg protein). These HFBs formed stable oil–water emulsions displaying an interfacial tension up to 7.6 ± 0.3 mN/m. The proteins were used in limestone cores under tertiary recovery oil well conditions to achieve up to 14% recovery.</description><subject>Cubes</subject><subject>Emulsions</subject><subject>Enhanced oil recovery</subject><subject>Entomopathogenic fungi</subject><subject>Fermentation</subject><subject>Foams</subject><subject>Fungi</subject><subject>Hydrophobins</subject><subject>Interfacial activity</subject><subject>Lecanicillium lecanii</subject><subject>Limestone</subject><subject>Lipase</subject><subject>Lipases</subject><subject>Oil recovery</subject><subject>Plastic foam</subject><subject>Polyurethane</subject><subject>Polyurethane foam</subject><subject>Proteins</subject><subject>Solid state fermentation</subject><subject>Surface tension</subject><subject>Tension</subject><subject>Thermal stability</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoOI6-gKuC69aTS9MMuFAGbzDgRtchzYVJ6TRjMh3o25s6rl0dDvzffw4fQrcYKgyY33eVG21fEcCiAlpBLc7QAouGlg2u6TlaQE6VhHJ8ia5S6gCgETVboMfnYasGbU0RfF9Eq8PRxqlop2I7mRj229D6IRUuhl2xsVoNXvu-9-Ou6H83f40unOqTvfmbS_T18vy5fis3H6_v66dNqSmvD6VxhLYKauCWcM4ZEcpQipkztLW1ozVRzBhgVFDBLFs5bRXWKwytaBquGF2iu1PvPobv0aaD7MIYh3xSEsgQCEaanCKnlI4hpWid3Ee_U3GSGORsSnZyNiVnUxKozKYy9HCCbP7_6G2USXs7S_FZyEGa4P_DfwB2vnFU</recordid><startdate>20180715</startdate><enddate>20180715</enddate><creator>Rocha-Pino, Zaizy</creator><creator>Ramos-López, Jesús I.</creator><creator>Gimeno, Miquel</creator><creator>Barragán-Aroche, Fernando</creator><creator>Durán-Valencia, Cecilia</creator><creator>López-Ramírez, Simón</creator><creator>Shirai, Keiko</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-6965-131X</orcidid></search><sort><creationdate>20180715</creationdate><title>Enhanced oil recovery by hydrophobins from Lecanicillium lecanii</title><author>Rocha-Pino, Zaizy ; Ramos-López, Jesús I. ; Gimeno, Miquel ; Barragán-Aroche, Fernando ; Durán-Valencia, Cecilia ; López-Ramírez, Simón ; Shirai, Keiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-df23ba0506e2666428ad3314fd3be5f352a4dd0438384e49fcea1c910b8776a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cubes</topic><topic>Emulsions</topic><topic>Enhanced oil recovery</topic><topic>Entomopathogenic fungi</topic><topic>Fermentation</topic><topic>Foams</topic><topic>Fungi</topic><topic>Hydrophobins</topic><topic>Interfacial activity</topic><topic>Lecanicillium lecanii</topic><topic>Limestone</topic><topic>Lipase</topic><topic>Lipases</topic><topic>Oil recovery</topic><topic>Plastic foam</topic><topic>Polyurethane</topic><topic>Polyurethane foam</topic><topic>Proteins</topic><topic>Solid state fermentation</topic><topic>Surface tension</topic><topic>Tension</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rocha-Pino, Zaizy</creatorcontrib><creatorcontrib>Ramos-López, Jesús I.</creatorcontrib><creatorcontrib>Gimeno, Miquel</creatorcontrib><creatorcontrib>Barragán-Aroche, Fernando</creatorcontrib><creatorcontrib>Durán-Valencia, Cecilia</creatorcontrib><creatorcontrib>López-Ramírez, Simón</creatorcontrib><creatorcontrib>Shirai, Keiko</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rocha-Pino, Zaizy</au><au>Ramos-López, Jesús I.</au><au>Gimeno, Miquel</au><au>Barragán-Aroche, Fernando</au><au>Durán-Valencia, Cecilia</au><au>López-Ramírez, Simón</au><au>Shirai, Keiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced oil recovery by hydrophobins from Lecanicillium lecanii</atitle><jtitle>Fuel (Guildford)</jtitle><date>2018-07-15</date><risdate>2018</risdate><volume>224</volume><spage>10</spage><epage>16</epage><pages>10-16</pages><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>•L. Lecanii produces hydrophobins in an 8.8L scale bioreactor.•Hydrophobins form stable oil in water emulsions.•Surface tension is preserved under aggressive oil well conditions.•Hydrophobins show 14% oil recovery. The hydrophobins (HFB)s are a class of proteins with high surface tension and thermostability which potential application in enhanced oil recovery (EOR). The entomopathogenic fungus Lecanicillium lecanii produced HFBs in an 8.8L-scale solid-state fermentation using polyurethane foams as inert support in three configurations. Additionally, crude enzyme with lipase activity was also produced and tested for EOR individually or in combination with HFBs. The polyurethane foam support in cubes attained the highest yield of class I HFB (17.3 ± 1%) and the highest lipase activity (3.6 ± 0.2 U/mg protein). These HFBs formed stable oil–water emulsions displaying an interfacial tension up to 7.6 ± 0.3 mN/m. The proteins were used in limestone cores under tertiary recovery oil well conditions to achieve up to 14% recovery.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2018.03.058</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6965-131X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0016-2361
ispartof Fuel (Guildford), 2018-07, Vol.224, p.10-16
issn 0016-2361
1873-7153
language eng
recordid cdi_proquest_journals_2083808427
source Elsevier ScienceDirect Journals Complete
subjects Cubes
Emulsions
Enhanced oil recovery
Entomopathogenic fungi
Fermentation
Foams
Fungi
Hydrophobins
Interfacial activity
Lecanicillium lecanii
Limestone
Lipase
Lipases
Oil recovery
Plastic foam
Polyurethane
Polyurethane foam
Proteins
Solid state fermentation
Surface tension
Tension
Thermal stability
title Enhanced oil recovery by hydrophobins from Lecanicillium lecanii
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T08%3A47%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20oil%20recovery%20by%20hydrophobins%20from%20Lecanicillium%20lecanii&rft.jtitle=Fuel%20(Guildford)&rft.au=Rocha-Pino,%20Zaizy&rft.date=2018-07-15&rft.volume=224&rft.spage=10&rft.epage=16&rft.pages=10-16&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2018.03.058&rft_dat=%3Cproquest_cross%3E2083808427%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2083808427&rft_id=info:pmid/&rft_els_id=S0016236118304642&rfr_iscdi=true