Constant volume spray ignition of C9-C10 biodiesel surrogates: Methyl decanoate, ethyl nonanoate, and methyl decenoates
Ignition delay times were measured in a constant volume spray combustion chamber for four compounds considered as surrogates for fatty-acid methyl/ethyl ester biodiesel fuels. Experiments were performed for methyl decanoate, ethyl nonanoate, methyl 9-decenoate, and methyl 5-decenoate for characteriz...
Gespeichert in:
Veröffentlicht in: | Fuel (Guildford) 2018-07, Vol.224, p.219-225 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 225 |
---|---|
container_issue | |
container_start_page | 219 |
container_title | Fuel (Guildford) |
container_volume | 224 |
creator | Hotard, Carson Tekawade, Aniket Oehlschlaeger, Matthew A. |
description | Ignition delay times were measured in a constant volume spray combustion chamber for four compounds considered as surrogates for fatty-acid methyl/ethyl ester biodiesel fuels. Experiments were performed for methyl decanoate, ethyl nonanoate, methyl 9-decenoate, and methyl 5-decenoate for characterization of the derived cetane number (DCN) and temperature-dependent spray ignition delay of these compounds under conditions relevant to low-temperature combustion engines (625–820 K and 2.14 and 4.0 MPa). The low-temperature reactivity of these compounds, from least reactive to most reactive at the DCN condition (818 K and 2.14 MPa), was determined to be: methyl 5-deceonate (DCN = 33.6), methyl 9-decenoate (DCN = 40.0), ethyl nonanoate (DCN = 50.2), and methyl decanoate (DCN = 52.5). Experimental results for temperature dependent ignition delay are compared to prior shock tube results and show the same order of reactivity with quantitatively similar differences in ignition delay for the C10 methyl esters, illustrating that spray ignition delay and DCN correlate to homogenous chemical kinetic reactivity for fuels with similar physical properties. Comparisons of measured DCNs with the statistical group contribution model of Dahmen and Marquardt (Energy and Fuels 2015, 29, 5781–5801) show good agreement for the influence of double bonds on reactivity for the C10 methyl esters studied. |
doi_str_mv | 10.1016/j.fuel.2018.03.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2083807472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236118303983</els_id><sourcerecordid>2083807472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-957a2c41cc4abc1e80fbf80e4c33c2526d60d840f63ba7edee944f22fdd35ae93</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD_-gKeAV3edJPtV8SKLX1DxoueQJpOask1qsqv037u16tHTwMPzzgwvIWcMcgasulzmdsAu58CaHEQOUO-RCWtqkdWsFPtkAqOVcVGxQ3KU0hJGoymLCflsg0-98j39CN2wQprWUW2oW3jXu-BpsLSdZi0DOnfBOEzY0TTEGBaqx3RFn7B_23TUoFY-jOiC7oAP_hcob-jqT8Nvmk7IgVVdwtOfeUxe725f2ods9nz_2N7MMi2qss-mZa24LpjWhZprhg3YuW0ACy2E5iWvTAWmKcBWYq5qNIjTorCcW2NEqXAqjsn5bu86hvcBUy-XYYh-PCk5NKKBuqj5aPGdpWNIKaKV6-hWKm4kA7ktWC7ltmC5LViCkGN9Y-h6F8Lx_w-HUSbt0Gs0LqLupQnuv_gXBeuGAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083807472</pqid></control><display><type>article</type><title>Constant volume spray ignition of C9-C10 biodiesel surrogates: Methyl decanoate, ethyl nonanoate, and methyl decenoates</title><source>Elsevier ScienceDirect Journals</source><creator>Hotard, Carson ; Tekawade, Aniket ; Oehlschlaeger, Matthew A.</creator><creatorcontrib>Hotard, Carson ; Tekawade, Aniket ; Oehlschlaeger, Matthew A.</creatorcontrib><description>Ignition delay times were measured in a constant volume spray combustion chamber for four compounds considered as surrogates for fatty-acid methyl/ethyl ester biodiesel fuels. Experiments were performed for methyl decanoate, ethyl nonanoate, methyl 9-decenoate, and methyl 5-decenoate for characterization of the derived cetane number (DCN) and temperature-dependent spray ignition delay of these compounds under conditions relevant to low-temperature combustion engines (625–820 K and 2.14 and 4.0 MPa). The low-temperature reactivity of these compounds, from least reactive to most reactive at the DCN condition (818 K and 2.14 MPa), was determined to be: methyl 5-deceonate (DCN = 33.6), methyl 9-decenoate (DCN = 40.0), ethyl nonanoate (DCN = 50.2), and methyl decanoate (DCN = 52.5). Experimental results for temperature dependent ignition delay are compared to prior shock tube results and show the same order of reactivity with quantitatively similar differences in ignition delay for the C10 methyl esters, illustrating that spray ignition delay and DCN correlate to homogenous chemical kinetic reactivity for fuels with similar physical properties. Comparisons of measured DCNs with the statistical group contribution model of Dahmen and Marquardt (Energy and Fuels 2015, 29, 5781–5801) show good agreement for the influence of double bonds on reactivity for the C10 methyl esters studied.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2018.03.007</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Biodiesel ; Biodiesel fuels ; Biofuels ; Cetane number ; Chemical reactions ; Combustion ; Combustion chambers ; Delay ; Derived cetane number (DCN) ; Diesel ; Esters ; Ethyl nonanoate ; Fatty acids ; Fuels ; Ignition ; Low temperature ; Low temperature physics ; Mathematical models ; Methyl decanoate ; Methyl decenoate ; Organic chemistry ; Physical properties ; Reactivity ; Spray ignition delay ; Temperature dependence ; Temperature effects</subject><ispartof>Fuel (Guildford), 2018-07, Vol.224, p.219-225</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-957a2c41cc4abc1e80fbf80e4c33c2526d60d840f63ba7edee944f22fdd35ae93</citedby><cites>FETCH-LOGICAL-c365t-957a2c41cc4abc1e80fbf80e4c33c2526d60d840f63ba7edee944f22fdd35ae93</cites><orcidid>0000-0001-6817-569X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fuel.2018.03.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Hotard, Carson</creatorcontrib><creatorcontrib>Tekawade, Aniket</creatorcontrib><creatorcontrib>Oehlschlaeger, Matthew A.</creatorcontrib><title>Constant volume spray ignition of C9-C10 biodiesel surrogates: Methyl decanoate, ethyl nonanoate, and methyl decenoates</title><title>Fuel (Guildford)</title><description>Ignition delay times were measured in a constant volume spray combustion chamber for four compounds considered as surrogates for fatty-acid methyl/ethyl ester biodiesel fuels. Experiments were performed for methyl decanoate, ethyl nonanoate, methyl 9-decenoate, and methyl 5-decenoate for characterization of the derived cetane number (DCN) and temperature-dependent spray ignition delay of these compounds under conditions relevant to low-temperature combustion engines (625–820 K and 2.14 and 4.0 MPa). The low-temperature reactivity of these compounds, from least reactive to most reactive at the DCN condition (818 K and 2.14 MPa), was determined to be: methyl 5-deceonate (DCN = 33.6), methyl 9-decenoate (DCN = 40.0), ethyl nonanoate (DCN = 50.2), and methyl decanoate (DCN = 52.5). Experimental results for temperature dependent ignition delay are compared to prior shock tube results and show the same order of reactivity with quantitatively similar differences in ignition delay for the C10 methyl esters, illustrating that spray ignition delay and DCN correlate to homogenous chemical kinetic reactivity for fuels with similar physical properties. Comparisons of measured DCNs with the statistical group contribution model of Dahmen and Marquardt (Energy and Fuels 2015, 29, 5781–5801) show good agreement for the influence of double bonds on reactivity for the C10 methyl esters studied.</description><subject>Biodiesel</subject><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Cetane number</subject><subject>Chemical reactions</subject><subject>Combustion</subject><subject>Combustion chambers</subject><subject>Delay</subject><subject>Derived cetane number (DCN)</subject><subject>Diesel</subject><subject>Esters</subject><subject>Ethyl nonanoate</subject><subject>Fatty acids</subject><subject>Fuels</subject><subject>Ignition</subject><subject>Low temperature</subject><subject>Low temperature physics</subject><subject>Mathematical models</subject><subject>Methyl decanoate</subject><subject>Methyl decenoate</subject><subject>Organic chemistry</subject><subject>Physical properties</subject><subject>Reactivity</subject><subject>Spray ignition delay</subject><subject>Temperature dependence</subject><subject>Temperature effects</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWD_-gKeAV3edJPtV8SKLX1DxoueQJpOask1qsqv037u16tHTwMPzzgwvIWcMcgasulzmdsAu58CaHEQOUO-RCWtqkdWsFPtkAqOVcVGxQ3KU0hJGoymLCflsg0-98j39CN2wQprWUW2oW3jXu-BpsLSdZi0DOnfBOEzY0TTEGBaqx3RFn7B_23TUoFY-jOiC7oAP_hcob-jqT8Nvmk7IgVVdwtOfeUxe725f2ods9nz_2N7MMi2qss-mZa24LpjWhZprhg3YuW0ACy2E5iWvTAWmKcBWYq5qNIjTorCcW2NEqXAqjsn5bu86hvcBUy-XYYh-PCk5NKKBuqj5aPGdpWNIKaKV6-hWKm4kA7ktWC7ltmC5LViCkGN9Y-h6F8Lx_w-HUSbt0Gs0LqLupQnuv_gXBeuGAQ</recordid><startdate>20180715</startdate><enddate>20180715</enddate><creator>Hotard, Carson</creator><creator>Tekawade, Aniket</creator><creator>Oehlschlaeger, Matthew A.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-6817-569X</orcidid></search><sort><creationdate>20180715</creationdate><title>Constant volume spray ignition of C9-C10 biodiesel surrogates: Methyl decanoate, ethyl nonanoate, and methyl decenoates</title><author>Hotard, Carson ; Tekawade, Aniket ; Oehlschlaeger, Matthew A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-957a2c41cc4abc1e80fbf80e4c33c2526d60d840f63ba7edee944f22fdd35ae93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biodiesel</topic><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Cetane number</topic><topic>Chemical reactions</topic><topic>Combustion</topic><topic>Combustion chambers</topic><topic>Delay</topic><topic>Derived cetane number (DCN)</topic><topic>Diesel</topic><topic>Esters</topic><topic>Ethyl nonanoate</topic><topic>Fatty acids</topic><topic>Fuels</topic><topic>Ignition</topic><topic>Low temperature</topic><topic>Low temperature physics</topic><topic>Mathematical models</topic><topic>Methyl decanoate</topic><topic>Methyl decenoate</topic><topic>Organic chemistry</topic><topic>Physical properties</topic><topic>Reactivity</topic><topic>Spray ignition delay</topic><topic>Temperature dependence</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hotard, Carson</creatorcontrib><creatorcontrib>Tekawade, Aniket</creatorcontrib><creatorcontrib>Oehlschlaeger, Matthew A.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hotard, Carson</au><au>Tekawade, Aniket</au><au>Oehlschlaeger, Matthew A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constant volume spray ignition of C9-C10 biodiesel surrogates: Methyl decanoate, ethyl nonanoate, and methyl decenoates</atitle><jtitle>Fuel (Guildford)</jtitle><date>2018-07-15</date><risdate>2018</risdate><volume>224</volume><spage>219</spage><epage>225</epage><pages>219-225</pages><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>Ignition delay times were measured in a constant volume spray combustion chamber for four compounds considered as surrogates for fatty-acid methyl/ethyl ester biodiesel fuels. Experiments were performed for methyl decanoate, ethyl nonanoate, methyl 9-decenoate, and methyl 5-decenoate for characterization of the derived cetane number (DCN) and temperature-dependent spray ignition delay of these compounds under conditions relevant to low-temperature combustion engines (625–820 K and 2.14 and 4.0 MPa). The low-temperature reactivity of these compounds, from least reactive to most reactive at the DCN condition (818 K and 2.14 MPa), was determined to be: methyl 5-deceonate (DCN = 33.6), methyl 9-decenoate (DCN = 40.0), ethyl nonanoate (DCN = 50.2), and methyl decanoate (DCN = 52.5). Experimental results for temperature dependent ignition delay are compared to prior shock tube results and show the same order of reactivity with quantitatively similar differences in ignition delay for the C10 methyl esters, illustrating that spray ignition delay and DCN correlate to homogenous chemical kinetic reactivity for fuels with similar physical properties. Comparisons of measured DCNs with the statistical group contribution model of Dahmen and Marquardt (Energy and Fuels 2015, 29, 5781–5801) show good agreement for the influence of double bonds on reactivity for the C10 methyl esters studied.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2018.03.007</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6817-569X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-2361 |
ispartof | Fuel (Guildford), 2018-07, Vol.224, p.219-225 |
issn | 0016-2361 1873-7153 |
language | eng |
recordid | cdi_proquest_journals_2083807472 |
source | Elsevier ScienceDirect Journals |
subjects | Biodiesel Biodiesel fuels Biofuels Cetane number Chemical reactions Combustion Combustion chambers Delay Derived cetane number (DCN) Diesel Esters Ethyl nonanoate Fatty acids Fuels Ignition Low temperature Low temperature physics Mathematical models Methyl decanoate Methyl decenoate Organic chemistry Physical properties Reactivity Spray ignition delay Temperature dependence Temperature effects |
title | Constant volume spray ignition of C9-C10 biodiesel surrogates: Methyl decanoate, ethyl nonanoate, and methyl decenoates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A53%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constant%20volume%20spray%20ignition%20of%20C9-C10%20biodiesel%20surrogates:%20Methyl%20decanoate,%20ethyl%20nonanoate,%20and%20methyl%20decenoates&rft.jtitle=Fuel%20(Guildford)&rft.au=Hotard,%20Carson&rft.date=2018-07-15&rft.volume=224&rft.spage=219&rft.epage=225&rft.pages=219-225&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2018.03.007&rft_dat=%3Cproquest_cross%3E2083807472%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2083807472&rft_id=info:pmid/&rft_els_id=S0016236118303983&rfr_iscdi=true |