Constant volume spray ignition of C9-C10 biodiesel surrogates: Methyl decanoate, ethyl nonanoate, and methyl decenoates

Ignition delay times were measured in a constant volume spray combustion chamber for four compounds considered as surrogates for fatty-acid methyl/ethyl ester biodiesel fuels. Experiments were performed for methyl decanoate, ethyl nonanoate, methyl 9-decenoate, and methyl 5-decenoate for characteriz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel (Guildford) 2018-07, Vol.224, p.219-225
Hauptverfasser: Hotard, Carson, Tekawade, Aniket, Oehlschlaeger, Matthew A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 225
container_issue
container_start_page 219
container_title Fuel (Guildford)
container_volume 224
creator Hotard, Carson
Tekawade, Aniket
Oehlschlaeger, Matthew A.
description Ignition delay times were measured in a constant volume spray combustion chamber for four compounds considered as surrogates for fatty-acid methyl/ethyl ester biodiesel fuels. Experiments were performed for methyl decanoate, ethyl nonanoate, methyl 9-decenoate, and methyl 5-decenoate for characterization of the derived cetane number (DCN) and temperature-dependent spray ignition delay of these compounds under conditions relevant to low-temperature combustion engines (625–820 K and 2.14 and 4.0 MPa). The low-temperature reactivity of these compounds, from least reactive to most reactive at the DCN condition (818 K and 2.14 MPa), was determined to be: methyl 5-deceonate (DCN = 33.6), methyl 9-decenoate (DCN = 40.0), ethyl nonanoate (DCN = 50.2), and methyl decanoate (DCN = 52.5). Experimental results for temperature dependent ignition delay are compared to prior shock tube results and show the same order of reactivity with quantitatively similar differences in ignition delay for the C10 methyl esters, illustrating that spray ignition delay and DCN correlate to homogenous chemical kinetic reactivity for fuels with similar physical properties. Comparisons of measured DCNs with the statistical group contribution model of Dahmen and Marquardt (Energy and Fuels 2015, 29, 5781–5801) show good agreement for the influence of double bonds on reactivity for the C10 methyl esters studied.
doi_str_mv 10.1016/j.fuel.2018.03.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2083807472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236118303983</els_id><sourcerecordid>2083807472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-957a2c41cc4abc1e80fbf80e4c33c2526d60d840f63ba7edee944f22fdd35ae93</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD_-gKeAV3edJPtV8SKLX1DxoueQJpOask1qsqv037u16tHTwMPzzgwvIWcMcgasulzmdsAu58CaHEQOUO-RCWtqkdWsFPtkAqOVcVGxQ3KU0hJGoymLCflsg0-98j39CN2wQprWUW2oW3jXu-BpsLSdZi0DOnfBOEzY0TTEGBaqx3RFn7B_23TUoFY-jOiC7oAP_hcob-jqT8Nvmk7IgVVdwtOfeUxe725f2ods9nz_2N7MMi2qss-mZa24LpjWhZprhg3YuW0ACy2E5iWvTAWmKcBWYq5qNIjTorCcW2NEqXAqjsn5bu86hvcBUy-XYYh-PCk5NKKBuqj5aPGdpWNIKaKV6-hWKm4kA7ktWC7ltmC5LViCkGN9Y-h6F8Lx_w-HUSbt0Gs0LqLupQnuv_gXBeuGAQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083807472</pqid></control><display><type>article</type><title>Constant volume spray ignition of C9-C10 biodiesel surrogates: Methyl decanoate, ethyl nonanoate, and methyl decenoates</title><source>Elsevier ScienceDirect Journals</source><creator>Hotard, Carson ; Tekawade, Aniket ; Oehlschlaeger, Matthew A.</creator><creatorcontrib>Hotard, Carson ; Tekawade, Aniket ; Oehlschlaeger, Matthew A.</creatorcontrib><description>Ignition delay times were measured in a constant volume spray combustion chamber for four compounds considered as surrogates for fatty-acid methyl/ethyl ester biodiesel fuels. Experiments were performed for methyl decanoate, ethyl nonanoate, methyl 9-decenoate, and methyl 5-decenoate for characterization of the derived cetane number (DCN) and temperature-dependent spray ignition delay of these compounds under conditions relevant to low-temperature combustion engines (625–820 K and 2.14 and 4.0 MPa). The low-temperature reactivity of these compounds, from least reactive to most reactive at the DCN condition (818 K and 2.14 MPa), was determined to be: methyl 5-deceonate (DCN = 33.6), methyl 9-decenoate (DCN = 40.0), ethyl nonanoate (DCN = 50.2), and methyl decanoate (DCN = 52.5). Experimental results for temperature dependent ignition delay are compared to prior shock tube results and show the same order of reactivity with quantitatively similar differences in ignition delay for the C10 methyl esters, illustrating that spray ignition delay and DCN correlate to homogenous chemical kinetic reactivity for fuels with similar physical properties. Comparisons of measured DCNs with the statistical group contribution model of Dahmen and Marquardt (Energy and Fuels 2015, 29, 5781–5801) show good agreement for the influence of double bonds on reactivity for the C10 methyl esters studied.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2018.03.007</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Biodiesel ; Biodiesel fuels ; Biofuels ; Cetane number ; Chemical reactions ; Combustion ; Combustion chambers ; Delay ; Derived cetane number (DCN) ; Diesel ; Esters ; Ethyl nonanoate ; Fatty acids ; Fuels ; Ignition ; Low temperature ; Low temperature physics ; Mathematical models ; Methyl decanoate ; Methyl decenoate ; Organic chemistry ; Physical properties ; Reactivity ; Spray ignition delay ; Temperature dependence ; Temperature effects</subject><ispartof>Fuel (Guildford), 2018-07, Vol.224, p.219-225</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-957a2c41cc4abc1e80fbf80e4c33c2526d60d840f63ba7edee944f22fdd35ae93</citedby><cites>FETCH-LOGICAL-c365t-957a2c41cc4abc1e80fbf80e4c33c2526d60d840f63ba7edee944f22fdd35ae93</cites><orcidid>0000-0001-6817-569X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fuel.2018.03.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Hotard, Carson</creatorcontrib><creatorcontrib>Tekawade, Aniket</creatorcontrib><creatorcontrib>Oehlschlaeger, Matthew A.</creatorcontrib><title>Constant volume spray ignition of C9-C10 biodiesel surrogates: Methyl decanoate, ethyl nonanoate, and methyl decenoates</title><title>Fuel (Guildford)</title><description>Ignition delay times were measured in a constant volume spray combustion chamber for four compounds considered as surrogates for fatty-acid methyl/ethyl ester biodiesel fuels. Experiments were performed for methyl decanoate, ethyl nonanoate, methyl 9-decenoate, and methyl 5-decenoate for characterization of the derived cetane number (DCN) and temperature-dependent spray ignition delay of these compounds under conditions relevant to low-temperature combustion engines (625–820 K and 2.14 and 4.0 MPa). The low-temperature reactivity of these compounds, from least reactive to most reactive at the DCN condition (818 K and 2.14 MPa), was determined to be: methyl 5-deceonate (DCN = 33.6), methyl 9-decenoate (DCN = 40.0), ethyl nonanoate (DCN = 50.2), and methyl decanoate (DCN = 52.5). Experimental results for temperature dependent ignition delay are compared to prior shock tube results and show the same order of reactivity with quantitatively similar differences in ignition delay for the C10 methyl esters, illustrating that spray ignition delay and DCN correlate to homogenous chemical kinetic reactivity for fuels with similar physical properties. Comparisons of measured DCNs with the statistical group contribution model of Dahmen and Marquardt (Energy and Fuels 2015, 29, 5781–5801) show good agreement for the influence of double bonds on reactivity for the C10 methyl esters studied.</description><subject>Biodiesel</subject><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Cetane number</subject><subject>Chemical reactions</subject><subject>Combustion</subject><subject>Combustion chambers</subject><subject>Delay</subject><subject>Derived cetane number (DCN)</subject><subject>Diesel</subject><subject>Esters</subject><subject>Ethyl nonanoate</subject><subject>Fatty acids</subject><subject>Fuels</subject><subject>Ignition</subject><subject>Low temperature</subject><subject>Low temperature physics</subject><subject>Mathematical models</subject><subject>Methyl decanoate</subject><subject>Methyl decenoate</subject><subject>Organic chemistry</subject><subject>Physical properties</subject><subject>Reactivity</subject><subject>Spray ignition delay</subject><subject>Temperature dependence</subject><subject>Temperature effects</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWD_-gKeAV3edJPtV8SKLX1DxoueQJpOask1qsqv037u16tHTwMPzzgwvIWcMcgasulzmdsAu58CaHEQOUO-RCWtqkdWsFPtkAqOVcVGxQ3KU0hJGoymLCflsg0-98j39CN2wQprWUW2oW3jXu-BpsLSdZi0DOnfBOEzY0TTEGBaqx3RFn7B_23TUoFY-jOiC7oAP_hcob-jqT8Nvmk7IgVVdwtOfeUxe725f2ods9nz_2N7MMi2qss-mZa24LpjWhZprhg3YuW0ACy2E5iWvTAWmKcBWYq5qNIjTorCcW2NEqXAqjsn5bu86hvcBUy-XYYh-PCk5NKKBuqj5aPGdpWNIKaKV6-hWKm4kA7ktWC7ltmC5LViCkGN9Y-h6F8Lx_w-HUSbt0Gs0LqLupQnuv_gXBeuGAQ</recordid><startdate>20180715</startdate><enddate>20180715</enddate><creator>Hotard, Carson</creator><creator>Tekawade, Aniket</creator><creator>Oehlschlaeger, Matthew A.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-6817-569X</orcidid></search><sort><creationdate>20180715</creationdate><title>Constant volume spray ignition of C9-C10 biodiesel surrogates: Methyl decanoate, ethyl nonanoate, and methyl decenoates</title><author>Hotard, Carson ; Tekawade, Aniket ; Oehlschlaeger, Matthew A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-957a2c41cc4abc1e80fbf80e4c33c2526d60d840f63ba7edee944f22fdd35ae93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biodiesel</topic><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Cetane number</topic><topic>Chemical reactions</topic><topic>Combustion</topic><topic>Combustion chambers</topic><topic>Delay</topic><topic>Derived cetane number (DCN)</topic><topic>Diesel</topic><topic>Esters</topic><topic>Ethyl nonanoate</topic><topic>Fatty acids</topic><topic>Fuels</topic><topic>Ignition</topic><topic>Low temperature</topic><topic>Low temperature physics</topic><topic>Mathematical models</topic><topic>Methyl decanoate</topic><topic>Methyl decenoate</topic><topic>Organic chemistry</topic><topic>Physical properties</topic><topic>Reactivity</topic><topic>Spray ignition delay</topic><topic>Temperature dependence</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hotard, Carson</creatorcontrib><creatorcontrib>Tekawade, Aniket</creatorcontrib><creatorcontrib>Oehlschlaeger, Matthew A.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hotard, Carson</au><au>Tekawade, Aniket</au><au>Oehlschlaeger, Matthew A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constant volume spray ignition of C9-C10 biodiesel surrogates: Methyl decanoate, ethyl nonanoate, and methyl decenoates</atitle><jtitle>Fuel (Guildford)</jtitle><date>2018-07-15</date><risdate>2018</risdate><volume>224</volume><spage>219</spage><epage>225</epage><pages>219-225</pages><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>Ignition delay times were measured in a constant volume spray combustion chamber for four compounds considered as surrogates for fatty-acid methyl/ethyl ester biodiesel fuels. Experiments were performed for methyl decanoate, ethyl nonanoate, methyl 9-decenoate, and methyl 5-decenoate for characterization of the derived cetane number (DCN) and temperature-dependent spray ignition delay of these compounds under conditions relevant to low-temperature combustion engines (625–820 K and 2.14 and 4.0 MPa). The low-temperature reactivity of these compounds, from least reactive to most reactive at the DCN condition (818 K and 2.14 MPa), was determined to be: methyl 5-deceonate (DCN = 33.6), methyl 9-decenoate (DCN = 40.0), ethyl nonanoate (DCN = 50.2), and methyl decanoate (DCN = 52.5). Experimental results for temperature dependent ignition delay are compared to prior shock tube results and show the same order of reactivity with quantitatively similar differences in ignition delay for the C10 methyl esters, illustrating that spray ignition delay and DCN correlate to homogenous chemical kinetic reactivity for fuels with similar physical properties. Comparisons of measured DCNs with the statistical group contribution model of Dahmen and Marquardt (Energy and Fuels 2015, 29, 5781–5801) show good agreement for the influence of double bonds on reactivity for the C10 methyl esters studied.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2018.03.007</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6817-569X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0016-2361
ispartof Fuel (Guildford), 2018-07, Vol.224, p.219-225
issn 0016-2361
1873-7153
language eng
recordid cdi_proquest_journals_2083807472
source Elsevier ScienceDirect Journals
subjects Biodiesel
Biodiesel fuels
Biofuels
Cetane number
Chemical reactions
Combustion
Combustion chambers
Delay
Derived cetane number (DCN)
Diesel
Esters
Ethyl nonanoate
Fatty acids
Fuels
Ignition
Low temperature
Low temperature physics
Mathematical models
Methyl decanoate
Methyl decenoate
Organic chemistry
Physical properties
Reactivity
Spray ignition delay
Temperature dependence
Temperature effects
title Constant volume spray ignition of C9-C10 biodiesel surrogates: Methyl decanoate, ethyl nonanoate, and methyl decenoates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A53%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constant%20volume%20spray%20ignition%20of%20C9-C10%20biodiesel%20surrogates:%20Methyl%20decanoate,%20ethyl%20nonanoate,%20and%20methyl%20decenoates&rft.jtitle=Fuel%20(Guildford)&rft.au=Hotard,%20Carson&rft.date=2018-07-15&rft.volume=224&rft.spage=219&rft.epage=225&rft.pages=219-225&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2018.03.007&rft_dat=%3Cproquest_cross%3E2083807472%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2083807472&rft_id=info:pmid/&rft_els_id=S0016236118303983&rfr_iscdi=true