Parameter security characterization of knapsack public-key crypto under quantum computing

In order to research the security of the knapsack problem under quantum algorithm attack, we study the quantum algorithm for knapsack problem over Z_r based on the relation between the dimension of the knapsack vector and r. First, the oracle function is designed based on the knapsack vector B and S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2014-02
Hauptverfasser: Fu, Xiangqun, Bao, Wansu, Shi, Jianhong, Li, Fada, Zhang, Yuchao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Fu, Xiangqun
Bao, Wansu
Shi, Jianhong
Li, Fada
Zhang, Yuchao
description In order to research the security of the knapsack problem under quantum algorithm attack, we study the quantum algorithm for knapsack problem over Z_r based on the relation between the dimension of the knapsack vector and r. First, the oracle function is designed based on the knapsack vector B and S, and the quantum algorithm for the knapsack problem over Z_r is presented. The observation probability of target state is not improved by designing unitary transform, but oracle function. Its complexity is polynomial. And its success probability depends on the relation between n and r. From the above discussion, we give the essential condition for the knapsack problem over Z_r against the existing quantum algorithm attacks, i.e. r
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083793475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083793475</sourcerecordid><originalsourceid>FETCH-proquest_journals_20837934753</originalsourceid><addsrcrecordid>eNqNi70OwiAYRYmJiY32HUicmyAUW2ejcXRwcWoQqdIfoMA31KeXwQdwusm55yxQRhnbFXVJ6QrlIXSEELqvKOcsQ_er8GJUUXkclASv44zlOzGZkP6IqK3BtsW9ES4I2WMHj0HLolfJ87OLFoN5pnoCYSKMWNrRQdTmtUHLVgxB5b9do-35dDteCuftBCrEprPgTboaSmpWHVhZcfaf9QWxJUPY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083793475</pqid></control><display><type>article</type><title>Parameter security characterization of knapsack public-key crypto under quantum computing</title><source>Free E- Journals</source><creator>Fu, Xiangqun ; Bao, Wansu ; Shi, Jianhong ; Li, Fada ; Zhang, Yuchao</creator><creatorcontrib>Fu, Xiangqun ; Bao, Wansu ; Shi, Jianhong ; Li, Fada ; Zhang, Yuchao</creatorcontrib><description>In order to research the security of the knapsack problem under quantum algorithm attack, we study the quantum algorithm for knapsack problem over Z_r based on the relation between the dimension of the knapsack vector and r. First, the oracle function is designed based on the knapsack vector B and S, and the quantum algorithm for the knapsack problem over Z_r is presented. The observation probability of target state is not improved by designing unitary transform, but oracle function. Its complexity is polynomial. And its success probability depends on the relation between n and r. From the above discussion, we give the essential condition for the knapsack problem over Z_r against the existing quantum algorithm attacks, i.e. r&lt;O(2^n). Then we analyze the security of the Chor-Rivest public-key crypto.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Branch &amp; bound algorithms ; Cybersecurity ; Knapsack problem ; Polynomials ; Quantum computing</subject><ispartof>arXiv.org, 2014-02</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Fu, Xiangqun</creatorcontrib><creatorcontrib>Bao, Wansu</creatorcontrib><creatorcontrib>Shi, Jianhong</creatorcontrib><creatorcontrib>Li, Fada</creatorcontrib><creatorcontrib>Zhang, Yuchao</creatorcontrib><title>Parameter security characterization of knapsack public-key crypto under quantum computing</title><title>arXiv.org</title><description>In order to research the security of the knapsack problem under quantum algorithm attack, we study the quantum algorithm for knapsack problem over Z_r based on the relation between the dimension of the knapsack vector and r. First, the oracle function is designed based on the knapsack vector B and S, and the quantum algorithm for the knapsack problem over Z_r is presented. The observation probability of target state is not improved by designing unitary transform, but oracle function. Its complexity is polynomial. And its success probability depends on the relation between n and r. From the above discussion, we give the essential condition for the knapsack problem over Z_r against the existing quantum algorithm attacks, i.e. r&lt;O(2^n). Then we analyze the security of the Chor-Rivest public-key crypto.</description><subject>Algorithms</subject><subject>Branch &amp; bound algorithms</subject><subject>Cybersecurity</subject><subject>Knapsack problem</subject><subject>Polynomials</subject><subject>Quantum computing</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi70OwiAYRYmJiY32HUicmyAUW2ejcXRwcWoQqdIfoMA31KeXwQdwusm55yxQRhnbFXVJ6QrlIXSEELqvKOcsQ_er8GJUUXkclASv44zlOzGZkP6IqK3BtsW9ES4I2WMHj0HLolfJ87OLFoN5pnoCYSKMWNrRQdTmtUHLVgxB5b9do-35dDteCuftBCrEprPgTboaSmpWHVhZcfaf9QWxJUPY</recordid><startdate>20140224</startdate><enddate>20140224</enddate><creator>Fu, Xiangqun</creator><creator>Bao, Wansu</creator><creator>Shi, Jianhong</creator><creator>Li, Fada</creator><creator>Zhang, Yuchao</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140224</creationdate><title>Parameter security characterization of knapsack public-key crypto under quantum computing</title><author>Fu, Xiangqun ; Bao, Wansu ; Shi, Jianhong ; Li, Fada ; Zhang, Yuchao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20837934753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Branch &amp; bound algorithms</topic><topic>Cybersecurity</topic><topic>Knapsack problem</topic><topic>Polynomials</topic><topic>Quantum computing</topic><toplevel>online_resources</toplevel><creatorcontrib>Fu, Xiangqun</creatorcontrib><creatorcontrib>Bao, Wansu</creatorcontrib><creatorcontrib>Shi, Jianhong</creatorcontrib><creatorcontrib>Li, Fada</creatorcontrib><creatorcontrib>Zhang, Yuchao</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Xiangqun</au><au>Bao, Wansu</au><au>Shi, Jianhong</au><au>Li, Fada</au><au>Zhang, Yuchao</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Parameter security characterization of knapsack public-key crypto under quantum computing</atitle><jtitle>arXiv.org</jtitle><date>2014-02-24</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>In order to research the security of the knapsack problem under quantum algorithm attack, we study the quantum algorithm for knapsack problem over Z_r based on the relation between the dimension of the knapsack vector and r. First, the oracle function is designed based on the knapsack vector B and S, and the quantum algorithm for the knapsack problem over Z_r is presented. The observation probability of target state is not improved by designing unitary transform, but oracle function. Its complexity is polynomial. And its success probability depends on the relation between n and r. From the above discussion, we give the essential condition for the knapsack problem over Z_r against the existing quantum algorithm attacks, i.e. r&lt;O(2^n). Then we analyze the security of the Chor-Rivest public-key crypto.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2014-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2083793475
source Free E- Journals
subjects Algorithms
Branch & bound algorithms
Cybersecurity
Knapsack problem
Polynomials
Quantum computing
title Parameter security characterization of knapsack public-key crypto under quantum computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A25%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Parameter%20security%20characterization%20of%20knapsack%20public-key%20crypto%20under%20quantum%20computing&rft.jtitle=arXiv.org&rft.au=Fu,%20Xiangqun&rft.date=2014-02-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2083793475%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2083793475&rft_id=info:pmid/&rfr_iscdi=true