On the Plaque Expansivity Conjecture
It is one of the main properties of uniformly hyperbolic dynamics that points of two distinct trajectories cannot be uniformly close one to another. This characteristics of hyperbolic dynamics is called expansivity. Hirsch, Pugh and Shub, 1977, formulated the so-called Plaque Expansivity Conjecture,...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-12 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kryzhevich, Sergey |
description | It is one of the main properties of uniformly hyperbolic dynamics that points of two distinct trajectories cannot be uniformly close one to another. This characteristics of hyperbolic dynamics is called expansivity. Hirsch, Pugh and Shub, 1977, formulated the so-called Plaque Expansivity Conjecture, assuming that two invariant sequences of leaves of central manifolds, corresponding to a partially hyperbolic diffeomorphism, cannot be locally close. There are many important statements in the theory of partial hyperbolicity that can be proved provided Plaque Expansivity Conjecture holds true. Here we are proving this conjecture in its general form. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083768066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083768066</sourcerecordid><originalsourceid>FETCH-proquest_journals_20837680663</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ8c9TKMlIVQjISSwsTVVwrShIzCvOLMssqVRwzs_LSk0uKS1K5WFgTUvMKU7lhdLcDMpuriHOHroFRflAXcUl8Vn5pUV5QKl4IwMLY3MzCwMzM2PiVAEAwfwuoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083768066</pqid></control><display><type>article</type><title>On the Plaque Expansivity Conjecture</title><source>Freely Accessible Journals</source><creator>Kryzhevich, Sergey</creator><creatorcontrib>Kryzhevich, Sergey</creatorcontrib><description>It is one of the main properties of uniformly hyperbolic dynamics that points of two distinct trajectories cannot be uniformly close one to another. This characteristics of hyperbolic dynamics is called expansivity. Hirsch, Pugh and Shub, 1977, formulated the so-called Plaque Expansivity Conjecture, assuming that two invariant sequences of leaves of central manifolds, corresponding to a partially hyperbolic diffeomorphism, cannot be locally close. There are many important statements in the theory of partial hyperbolicity that can be proved provided Plaque Expansivity Conjecture holds true. Here we are proving this conjecture in its general form.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Expansion ; Isomorphism</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Kryzhevich, Sergey</creatorcontrib><title>On the Plaque Expansivity Conjecture</title><title>arXiv.org</title><description>It is one of the main properties of uniformly hyperbolic dynamics that points of two distinct trajectories cannot be uniformly close one to another. This characteristics of hyperbolic dynamics is called expansivity. Hirsch, Pugh and Shub, 1977, formulated the so-called Plaque Expansivity Conjecture, assuming that two invariant sequences of leaves of central manifolds, corresponding to a partially hyperbolic diffeomorphism, cannot be locally close. There are many important statements in the theory of partial hyperbolicity that can be proved provided Plaque Expansivity Conjecture holds true. Here we are proving this conjecture in its general form.</description><subject>Expansion</subject><subject>Isomorphism</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ8c9TKMlIVQjISSwsTVVwrShIzCvOLMssqVRwzs_LSk0uKS1K5WFgTUvMKU7lhdLcDMpuriHOHroFRflAXcUl8Vn5pUV5QKl4IwMLY3MzCwMzM2PiVAEAwfwuoQ</recordid><startdate>20241220</startdate><enddate>20241220</enddate><creator>Kryzhevich, Sergey</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241220</creationdate><title>On the Plaque Expansivity Conjecture</title><author>Kryzhevich, Sergey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20837680663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Expansion</topic><topic>Isomorphism</topic><toplevel>online_resources</toplevel><creatorcontrib>Kryzhevich, Sergey</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kryzhevich, Sergey</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On the Plaque Expansivity Conjecture</atitle><jtitle>arXiv.org</jtitle><date>2024-12-20</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>It is one of the main properties of uniformly hyperbolic dynamics that points of two distinct trajectories cannot be uniformly close one to another. This characteristics of hyperbolic dynamics is called expansivity. Hirsch, Pugh and Shub, 1977, formulated the so-called Plaque Expansivity Conjecture, assuming that two invariant sequences of leaves of central manifolds, corresponding to a partially hyperbolic diffeomorphism, cannot be locally close. There are many important statements in the theory of partial hyperbolicity that can be proved provided Plaque Expansivity Conjecture holds true. Here we are proving this conjecture in its general form.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2083768066 |
source | Freely Accessible Journals |
subjects | Expansion Isomorphism |
title | On the Plaque Expansivity Conjecture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T04%3A37%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20the%20Plaque%20Expansivity%20Conjecture&rft.jtitle=arXiv.org&rft.au=Kryzhevich,%20Sergey&rft.date=2024-12-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2083768066%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2083768066&rft_id=info:pmid/&rfr_iscdi=true |