Inkjet Printing of Self‐Assembled 2D Titanium Carbide and Protein Electrodes for Stimuli‐Responsive Electromagnetic Shielding

2D titanium carbides (MXene) possess significant characteristics including high conductivity and electromagnetic interference shielding efficiency (EMI SE) that are important for applications in printed and flexible electronics. However, MXene‐based ink formulations are yet to be demonstrated for pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2018-08, Vol.28 (32), p.n/a
Hauptverfasser: Vural, Mert, Pena‐Francesch, Abdon, Bars‐Pomes, Joan, Jung, Huihun, Gudapati, Hemanth, Hatter, Christine B., Allen, Benjamin D., Anasori, Babak, Ozbolat, Ibrahim T., Gogotsi, Yury, Demirel, Melik C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 32
container_start_page
container_title Advanced functional materials
container_volume 28
creator Vural, Mert
Pena‐Francesch, Abdon
Bars‐Pomes, Joan
Jung, Huihun
Gudapati, Hemanth
Hatter, Christine B.
Allen, Benjamin D.
Anasori, Babak
Ozbolat, Ibrahim T.
Gogotsi, Yury
Demirel, Melik C.
description 2D titanium carbides (MXene) possess significant characteristics including high conductivity and electromagnetic interference shielding efficiency (EMI SE) that are important for applications in printed and flexible electronics. However, MXene‐based ink formulations are yet to be demonstrated for proper inkjet printing of MXene patterns. Here, tandem repeat synthetic proteins based on squid ring teeth (SRT) are employed as templates of molecular self‐assembly to engineer MXene inks that can be printed as stimuli‐responsive electrodes on various substrates including cellulose paper, glass, and flexible polyethylene terephthalate (PET). MXene electrodes printed on PET substrates are able to display electrical conductivity values as high as 1080 ± 175 S cm−1, which significantly exceeds electrical conductivity values of state‐of‐the‐art inkjet‐printed electrodes composed of other 2D materials including graphene (250 S cm−1) and reduced graphene oxide (340 S cm−1). Furthermore, this high electrical conductivity is sustained under excessive bending deformation. These flexible electrodes also exhibit effective EMI SE values reaching 50 dB at films with thicknesses of 1.35 µm, which mainly originate from their high electrical conductivity and layered structure. Inkjet printing of 2D titanium carbide (MXene) crystals facilitated with the help of synthetic proteins offers novel sensor electrodes and effective electromagnetic shielding for printed electronics. This study presents an alternative method to alter solution properties of MXene sheets and making them suitable for inkjet printing using synthetic proteins.
doi_str_mv 10.1002/adfm.201801972
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2083689583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083689583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4102-2ddcac635b62ccbfc341dfa67ba20145a0febd432e3c0a7f6953370c67211dd03</originalsourceid><addsrcrecordid>eNqFkLtOAzEQRVcIJEKgpbZEneDHPssoD4gUBCJBolt57XFw2LWDvQtKB3_AN_IlbBQIJdVMcc4dzQ2Cc4L7BGN6yaWq-hSTFJMsoQdBh8Qk7jFM08P9Th6PgxPvVxiTJGFhJ_iYmucV1OjOaVNrs0RWoTmU6uv9c-A9VEUJEtERWuiaG91UaMhdoSUgbmQr2Rq0QeMSRO2sBI-UdWhe66opdRtxD35tjdev8MtUfGmg1gLNnzSUsr14GhwpXno4-5nd4GEyXgyve7Pbq-lwMOuJkGDao1IKLmIWFTEVolCChUQqHicFb38OI44VFDJkFJjAPFFxFjGWYBEnlBApMesGF7vctbMvDfg6X9nGmfZkTnHK4jSLUtZS_R0lnPXegcrXTlfcbXKC823N-bbmfF9zK2Q74U2XsPmHzgejyc2f-w24NoVq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083689583</pqid></control><display><type>article</type><title>Inkjet Printing of Self‐Assembled 2D Titanium Carbide and Protein Electrodes for Stimuli‐Responsive Electromagnetic Shielding</title><source>Access via Wiley Online Library</source><creator>Vural, Mert ; Pena‐Francesch, Abdon ; Bars‐Pomes, Joan ; Jung, Huihun ; Gudapati, Hemanth ; Hatter, Christine B. ; Allen, Benjamin D. ; Anasori, Babak ; Ozbolat, Ibrahim T. ; Gogotsi, Yury ; Demirel, Melik C.</creator><creatorcontrib>Vural, Mert ; Pena‐Francesch, Abdon ; Bars‐Pomes, Joan ; Jung, Huihun ; Gudapati, Hemanth ; Hatter, Christine B. ; Allen, Benjamin D. ; Anasori, Babak ; Ozbolat, Ibrahim T. ; Gogotsi, Yury ; Demirel, Melik C.</creatorcontrib><description>2D titanium carbides (MXene) possess significant characteristics including high conductivity and electromagnetic interference shielding efficiency (EMI SE) that are important for applications in printed and flexible electronics. However, MXene‐based ink formulations are yet to be demonstrated for proper inkjet printing of MXene patterns. Here, tandem repeat synthetic proteins based on squid ring teeth (SRT) are employed as templates of molecular self‐assembly to engineer MXene inks that can be printed as stimuli‐responsive electrodes on various substrates including cellulose paper, glass, and flexible polyethylene terephthalate (PET). MXene electrodes printed on PET substrates are able to display electrical conductivity values as high as 1080 ± 175 S cm−1, which significantly exceeds electrical conductivity values of state‐of‐the‐art inkjet‐printed electrodes composed of other 2D materials including graphene (250 S cm−1) and reduced graphene oxide (340 S cm−1). Furthermore, this high electrical conductivity is sustained under excessive bending deformation. These flexible electrodes also exhibit effective EMI SE values reaching 50 dB at films with thicknesses of 1.35 µm, which mainly originate from their high electrical conductivity and layered structure. Inkjet printing of 2D titanium carbide (MXene) crystals facilitated with the help of synthetic proteins offers novel sensor electrodes and effective electromagnetic shielding for printed electronics. This study presents an alternative method to alter solution properties of MXene sheets and making them suitable for inkjet printing using synthetic proteins.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201801972</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Conductivity ; Deformation effects ; Electrical resistivity ; Electrodes ; electromagnetic interference shielding ; Electromagnetic shielding ; Flexible components ; Formulations ; Glass substrates ; Graphene ; Inkjet printing ; Inks ; Materials science ; MXene ; Polyethylene terephthalate ; Proteins ; responsive electrodes ; Stimuli ; synthetic protein ; Titanium carbide</subject><ispartof>Advanced functional materials, 2018-08, Vol.28 (32), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4102-2ddcac635b62ccbfc341dfa67ba20145a0febd432e3c0a7f6953370c67211dd03</citedby><cites>FETCH-LOGICAL-c4102-2ddcac635b62ccbfc341dfa67ba20145a0febd432e3c0a7f6953370c67211dd03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201801972$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201801972$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids></links><search><creatorcontrib>Vural, Mert</creatorcontrib><creatorcontrib>Pena‐Francesch, Abdon</creatorcontrib><creatorcontrib>Bars‐Pomes, Joan</creatorcontrib><creatorcontrib>Jung, Huihun</creatorcontrib><creatorcontrib>Gudapati, Hemanth</creatorcontrib><creatorcontrib>Hatter, Christine B.</creatorcontrib><creatorcontrib>Allen, Benjamin D.</creatorcontrib><creatorcontrib>Anasori, Babak</creatorcontrib><creatorcontrib>Ozbolat, Ibrahim T.</creatorcontrib><creatorcontrib>Gogotsi, Yury</creatorcontrib><creatorcontrib>Demirel, Melik C.</creatorcontrib><title>Inkjet Printing of Self‐Assembled 2D Titanium Carbide and Protein Electrodes for Stimuli‐Responsive Electromagnetic Shielding</title><title>Advanced functional materials</title><description>2D titanium carbides (MXene) possess significant characteristics including high conductivity and electromagnetic interference shielding efficiency (EMI SE) that are important for applications in printed and flexible electronics. However, MXene‐based ink formulations are yet to be demonstrated for proper inkjet printing of MXene patterns. Here, tandem repeat synthetic proteins based on squid ring teeth (SRT) are employed as templates of molecular self‐assembly to engineer MXene inks that can be printed as stimuli‐responsive electrodes on various substrates including cellulose paper, glass, and flexible polyethylene terephthalate (PET). MXene electrodes printed on PET substrates are able to display electrical conductivity values as high as 1080 ± 175 S cm−1, which significantly exceeds electrical conductivity values of state‐of‐the‐art inkjet‐printed electrodes composed of other 2D materials including graphene (250 S cm−1) and reduced graphene oxide (340 S cm−1). Furthermore, this high electrical conductivity is sustained under excessive bending deformation. These flexible electrodes also exhibit effective EMI SE values reaching 50 dB at films with thicknesses of 1.35 µm, which mainly originate from their high electrical conductivity and layered structure. Inkjet printing of 2D titanium carbide (MXene) crystals facilitated with the help of synthetic proteins offers novel sensor electrodes and effective electromagnetic shielding for printed electronics. This study presents an alternative method to alter solution properties of MXene sheets and making them suitable for inkjet printing using synthetic proteins.</description><subject>Conductivity</subject><subject>Deformation effects</subject><subject>Electrical resistivity</subject><subject>Electrodes</subject><subject>electromagnetic interference shielding</subject><subject>Electromagnetic shielding</subject><subject>Flexible components</subject><subject>Formulations</subject><subject>Glass substrates</subject><subject>Graphene</subject><subject>Inkjet printing</subject><subject>Inks</subject><subject>Materials science</subject><subject>MXene</subject><subject>Polyethylene terephthalate</subject><subject>Proteins</subject><subject>responsive electrodes</subject><subject>Stimuli</subject><subject>synthetic protein</subject><subject>Titanium carbide</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOAzEQRVcIJEKgpbZEneDHPssoD4gUBCJBolt57XFw2LWDvQtKB3_AN_IlbBQIJdVMcc4dzQ2Cc4L7BGN6yaWq-hSTFJMsoQdBh8Qk7jFM08P9Th6PgxPvVxiTJGFhJ_iYmucV1OjOaVNrs0RWoTmU6uv9c-A9VEUJEtERWuiaG91UaMhdoSUgbmQr2Rq0QeMSRO2sBI-UdWhe66opdRtxD35tjdev8MtUfGmg1gLNnzSUsr14GhwpXno4-5nd4GEyXgyve7Pbq-lwMOuJkGDao1IKLmIWFTEVolCChUQqHicFb38OI44VFDJkFJjAPFFxFjGWYBEnlBApMesGF7vctbMvDfg6X9nGmfZkTnHK4jSLUtZS_R0lnPXegcrXTlfcbXKC823N-bbmfF9zK2Q74U2XsPmHzgejyc2f-w24NoVq</recordid><startdate>20180808</startdate><enddate>20180808</enddate><creator>Vural, Mert</creator><creator>Pena‐Francesch, Abdon</creator><creator>Bars‐Pomes, Joan</creator><creator>Jung, Huihun</creator><creator>Gudapati, Hemanth</creator><creator>Hatter, Christine B.</creator><creator>Allen, Benjamin D.</creator><creator>Anasori, Babak</creator><creator>Ozbolat, Ibrahim T.</creator><creator>Gogotsi, Yury</creator><creator>Demirel, Melik C.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20180808</creationdate><title>Inkjet Printing of Self‐Assembled 2D Titanium Carbide and Protein Electrodes for Stimuli‐Responsive Electromagnetic Shielding</title><author>Vural, Mert ; Pena‐Francesch, Abdon ; Bars‐Pomes, Joan ; Jung, Huihun ; Gudapati, Hemanth ; Hatter, Christine B. ; Allen, Benjamin D. ; Anasori, Babak ; Ozbolat, Ibrahim T. ; Gogotsi, Yury ; Demirel, Melik C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4102-2ddcac635b62ccbfc341dfa67ba20145a0febd432e3c0a7f6953370c67211dd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Conductivity</topic><topic>Deformation effects</topic><topic>Electrical resistivity</topic><topic>Electrodes</topic><topic>electromagnetic interference shielding</topic><topic>Electromagnetic shielding</topic><topic>Flexible components</topic><topic>Formulations</topic><topic>Glass substrates</topic><topic>Graphene</topic><topic>Inkjet printing</topic><topic>Inks</topic><topic>Materials science</topic><topic>MXene</topic><topic>Polyethylene terephthalate</topic><topic>Proteins</topic><topic>responsive electrodes</topic><topic>Stimuli</topic><topic>synthetic protein</topic><topic>Titanium carbide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vural, Mert</creatorcontrib><creatorcontrib>Pena‐Francesch, Abdon</creatorcontrib><creatorcontrib>Bars‐Pomes, Joan</creatorcontrib><creatorcontrib>Jung, Huihun</creatorcontrib><creatorcontrib>Gudapati, Hemanth</creatorcontrib><creatorcontrib>Hatter, Christine B.</creatorcontrib><creatorcontrib>Allen, Benjamin D.</creatorcontrib><creatorcontrib>Anasori, Babak</creatorcontrib><creatorcontrib>Ozbolat, Ibrahim T.</creatorcontrib><creatorcontrib>Gogotsi, Yury</creatorcontrib><creatorcontrib>Demirel, Melik C.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vural, Mert</au><au>Pena‐Francesch, Abdon</au><au>Bars‐Pomes, Joan</au><au>Jung, Huihun</au><au>Gudapati, Hemanth</au><au>Hatter, Christine B.</au><au>Allen, Benjamin D.</au><au>Anasori, Babak</au><au>Ozbolat, Ibrahim T.</au><au>Gogotsi, Yury</au><au>Demirel, Melik C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inkjet Printing of Self‐Assembled 2D Titanium Carbide and Protein Electrodes for Stimuli‐Responsive Electromagnetic Shielding</atitle><jtitle>Advanced functional materials</jtitle><date>2018-08-08</date><risdate>2018</risdate><volume>28</volume><issue>32</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>2D titanium carbides (MXene) possess significant characteristics including high conductivity and electromagnetic interference shielding efficiency (EMI SE) that are important for applications in printed and flexible electronics. However, MXene‐based ink formulations are yet to be demonstrated for proper inkjet printing of MXene patterns. Here, tandem repeat synthetic proteins based on squid ring teeth (SRT) are employed as templates of molecular self‐assembly to engineer MXene inks that can be printed as stimuli‐responsive electrodes on various substrates including cellulose paper, glass, and flexible polyethylene terephthalate (PET). MXene electrodes printed on PET substrates are able to display electrical conductivity values as high as 1080 ± 175 S cm−1, which significantly exceeds electrical conductivity values of state‐of‐the‐art inkjet‐printed electrodes composed of other 2D materials including graphene (250 S cm−1) and reduced graphene oxide (340 S cm−1). Furthermore, this high electrical conductivity is sustained under excessive bending deformation. These flexible electrodes also exhibit effective EMI SE values reaching 50 dB at films with thicknesses of 1.35 µm, which mainly originate from their high electrical conductivity and layered structure. Inkjet printing of 2D titanium carbide (MXene) crystals facilitated with the help of synthetic proteins offers novel sensor electrodes and effective electromagnetic shielding for printed electronics. This study presents an alternative method to alter solution properties of MXene sheets and making them suitable for inkjet printing using synthetic proteins.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201801972</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2018-08, Vol.28 (32), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2083689583
source Access via Wiley Online Library
subjects Conductivity
Deformation effects
Electrical resistivity
Electrodes
electromagnetic interference shielding
Electromagnetic shielding
Flexible components
Formulations
Glass substrates
Graphene
Inkjet printing
Inks
Materials science
MXene
Polyethylene terephthalate
Proteins
responsive electrodes
Stimuli
synthetic protein
Titanium carbide
title Inkjet Printing of Self‐Assembled 2D Titanium Carbide and Protein Electrodes for Stimuli‐Responsive Electromagnetic Shielding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T20%3A58%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inkjet%20Printing%20of%20Self%E2%80%90Assembled%202D%20Titanium%20Carbide%20and%20Protein%20Electrodes%20for%20Stimuli%E2%80%90Responsive%20Electromagnetic%20Shielding&rft.jtitle=Advanced%20functional%20materials&rft.au=Vural,%20Mert&rft.date=2018-08-08&rft.volume=28&rft.issue=32&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201801972&rft_dat=%3Cproquest_cross%3E2083689583%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2083689583&rft_id=info:pmid/&rfr_iscdi=true