Inkjet Printing of Self‐Assembled 2D Titanium Carbide and Protein Electrodes for Stimuli‐Responsive Electromagnetic Shielding
2D titanium carbides (MXene) possess significant characteristics including high conductivity and electromagnetic interference shielding efficiency (EMI SE) that are important for applications in printed and flexible electronics. However, MXene‐based ink formulations are yet to be demonstrated for pr...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2018-08, Vol.28 (32), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 32 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 28 |
creator | Vural, Mert Pena‐Francesch, Abdon Bars‐Pomes, Joan Jung, Huihun Gudapati, Hemanth Hatter, Christine B. Allen, Benjamin D. Anasori, Babak Ozbolat, Ibrahim T. Gogotsi, Yury Demirel, Melik C. |
description | 2D titanium carbides (MXene) possess significant characteristics including high conductivity and electromagnetic interference shielding efficiency (EMI SE) that are important for applications in printed and flexible electronics. However, MXene‐based ink formulations are yet to be demonstrated for proper inkjet printing of MXene patterns. Here, tandem repeat synthetic proteins based on squid ring teeth (SRT) are employed as templates of molecular self‐assembly to engineer MXene inks that can be printed as stimuli‐responsive electrodes on various substrates including cellulose paper, glass, and flexible polyethylene terephthalate (PET). MXene electrodes printed on PET substrates are able to display electrical conductivity values as high as 1080 ± 175 S cm−1, which significantly exceeds electrical conductivity values of state‐of‐the‐art inkjet‐printed electrodes composed of other 2D materials including graphene (250 S cm−1) and reduced graphene oxide (340 S cm−1). Furthermore, this high electrical conductivity is sustained under excessive bending deformation. These flexible electrodes also exhibit effective EMI SE values reaching 50 dB at films with thicknesses of 1.35 µm, which mainly originate from their high electrical conductivity and layered structure.
Inkjet printing of 2D titanium carbide (MXene) crystals facilitated with the help of synthetic proteins offers novel sensor electrodes and effective electromagnetic shielding for printed electronics. This study presents an alternative method to alter solution properties of MXene sheets and making them suitable for inkjet printing using synthetic proteins. |
doi_str_mv | 10.1002/adfm.201801972 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2083689583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083689583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4102-2ddcac635b62ccbfc341dfa67ba20145a0febd432e3c0a7f6953370c67211dd03</originalsourceid><addsrcrecordid>eNqFkLtOAzEQRVcIJEKgpbZEneDHPssoD4gUBCJBolt57XFw2LWDvQtKB3_AN_IlbBQIJdVMcc4dzQ2Cc4L7BGN6yaWq-hSTFJMsoQdBh8Qk7jFM08P9Th6PgxPvVxiTJGFhJ_iYmucV1OjOaVNrs0RWoTmU6uv9c-A9VEUJEtERWuiaG91UaMhdoSUgbmQr2Rq0QeMSRO2sBI-UdWhe66opdRtxD35tjdev8MtUfGmg1gLNnzSUsr14GhwpXno4-5nd4GEyXgyve7Pbq-lwMOuJkGDao1IKLmIWFTEVolCChUQqHicFb38OI44VFDJkFJjAPFFxFjGWYBEnlBApMesGF7vctbMvDfg6X9nGmfZkTnHK4jSLUtZS_R0lnPXegcrXTlfcbXKC823N-bbmfF9zK2Q74U2XsPmHzgejyc2f-w24NoVq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083689583</pqid></control><display><type>article</type><title>Inkjet Printing of Self‐Assembled 2D Titanium Carbide and Protein Electrodes for Stimuli‐Responsive Electromagnetic Shielding</title><source>Access via Wiley Online Library</source><creator>Vural, Mert ; Pena‐Francesch, Abdon ; Bars‐Pomes, Joan ; Jung, Huihun ; Gudapati, Hemanth ; Hatter, Christine B. ; Allen, Benjamin D. ; Anasori, Babak ; Ozbolat, Ibrahim T. ; Gogotsi, Yury ; Demirel, Melik C.</creator><creatorcontrib>Vural, Mert ; Pena‐Francesch, Abdon ; Bars‐Pomes, Joan ; Jung, Huihun ; Gudapati, Hemanth ; Hatter, Christine B. ; Allen, Benjamin D. ; Anasori, Babak ; Ozbolat, Ibrahim T. ; Gogotsi, Yury ; Demirel, Melik C.</creatorcontrib><description>2D titanium carbides (MXene) possess significant characteristics including high conductivity and electromagnetic interference shielding efficiency (EMI SE) that are important for applications in printed and flexible electronics. However, MXene‐based ink formulations are yet to be demonstrated for proper inkjet printing of MXene patterns. Here, tandem repeat synthetic proteins based on squid ring teeth (SRT) are employed as templates of molecular self‐assembly to engineer MXene inks that can be printed as stimuli‐responsive electrodes on various substrates including cellulose paper, glass, and flexible polyethylene terephthalate (PET). MXene electrodes printed on PET substrates are able to display electrical conductivity values as high as 1080 ± 175 S cm−1, which significantly exceeds electrical conductivity values of state‐of‐the‐art inkjet‐printed electrodes composed of other 2D materials including graphene (250 S cm−1) and reduced graphene oxide (340 S cm−1). Furthermore, this high electrical conductivity is sustained under excessive bending deformation. These flexible electrodes also exhibit effective EMI SE values reaching 50 dB at films with thicknesses of 1.35 µm, which mainly originate from their high electrical conductivity and layered structure.
Inkjet printing of 2D titanium carbide (MXene) crystals facilitated with the help of synthetic proteins offers novel sensor electrodes and effective electromagnetic shielding for printed electronics. This study presents an alternative method to alter solution properties of MXene sheets and making them suitable for inkjet printing using synthetic proteins.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201801972</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Conductivity ; Deformation effects ; Electrical resistivity ; Electrodes ; electromagnetic interference shielding ; Electromagnetic shielding ; Flexible components ; Formulations ; Glass substrates ; Graphene ; Inkjet printing ; Inks ; Materials science ; MXene ; Polyethylene terephthalate ; Proteins ; responsive electrodes ; Stimuli ; synthetic protein ; Titanium carbide</subject><ispartof>Advanced functional materials, 2018-08, Vol.28 (32), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4102-2ddcac635b62ccbfc341dfa67ba20145a0febd432e3c0a7f6953370c67211dd03</citedby><cites>FETCH-LOGICAL-c4102-2ddcac635b62ccbfc341dfa67ba20145a0febd432e3c0a7f6953370c67211dd03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201801972$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201801972$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids></links><search><creatorcontrib>Vural, Mert</creatorcontrib><creatorcontrib>Pena‐Francesch, Abdon</creatorcontrib><creatorcontrib>Bars‐Pomes, Joan</creatorcontrib><creatorcontrib>Jung, Huihun</creatorcontrib><creatorcontrib>Gudapati, Hemanth</creatorcontrib><creatorcontrib>Hatter, Christine B.</creatorcontrib><creatorcontrib>Allen, Benjamin D.</creatorcontrib><creatorcontrib>Anasori, Babak</creatorcontrib><creatorcontrib>Ozbolat, Ibrahim T.</creatorcontrib><creatorcontrib>Gogotsi, Yury</creatorcontrib><creatorcontrib>Demirel, Melik C.</creatorcontrib><title>Inkjet Printing of Self‐Assembled 2D Titanium Carbide and Protein Electrodes for Stimuli‐Responsive Electromagnetic Shielding</title><title>Advanced functional materials</title><description>2D titanium carbides (MXene) possess significant characteristics including high conductivity and electromagnetic interference shielding efficiency (EMI SE) that are important for applications in printed and flexible electronics. However, MXene‐based ink formulations are yet to be demonstrated for proper inkjet printing of MXene patterns. Here, tandem repeat synthetic proteins based on squid ring teeth (SRT) are employed as templates of molecular self‐assembly to engineer MXene inks that can be printed as stimuli‐responsive electrodes on various substrates including cellulose paper, glass, and flexible polyethylene terephthalate (PET). MXene electrodes printed on PET substrates are able to display electrical conductivity values as high as 1080 ± 175 S cm−1, which significantly exceeds electrical conductivity values of state‐of‐the‐art inkjet‐printed electrodes composed of other 2D materials including graphene (250 S cm−1) and reduced graphene oxide (340 S cm−1). Furthermore, this high electrical conductivity is sustained under excessive bending deformation. These flexible electrodes also exhibit effective EMI SE values reaching 50 dB at films with thicknesses of 1.35 µm, which mainly originate from their high electrical conductivity and layered structure.
Inkjet printing of 2D titanium carbide (MXene) crystals facilitated with the help of synthetic proteins offers novel sensor electrodes and effective electromagnetic shielding for printed electronics. This study presents an alternative method to alter solution properties of MXene sheets and making them suitable for inkjet printing using synthetic proteins.</description><subject>Conductivity</subject><subject>Deformation effects</subject><subject>Electrical resistivity</subject><subject>Electrodes</subject><subject>electromagnetic interference shielding</subject><subject>Electromagnetic shielding</subject><subject>Flexible components</subject><subject>Formulations</subject><subject>Glass substrates</subject><subject>Graphene</subject><subject>Inkjet printing</subject><subject>Inks</subject><subject>Materials science</subject><subject>MXene</subject><subject>Polyethylene terephthalate</subject><subject>Proteins</subject><subject>responsive electrodes</subject><subject>Stimuli</subject><subject>synthetic protein</subject><subject>Titanium carbide</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOAzEQRVcIJEKgpbZEneDHPssoD4gUBCJBolt57XFw2LWDvQtKB3_AN_IlbBQIJdVMcc4dzQ2Cc4L7BGN6yaWq-hSTFJMsoQdBh8Qk7jFM08P9Th6PgxPvVxiTJGFhJ_iYmucV1OjOaVNrs0RWoTmU6uv9c-A9VEUJEtERWuiaG91UaMhdoSUgbmQr2Rq0QeMSRO2sBI-UdWhe66opdRtxD35tjdev8MtUfGmg1gLNnzSUsr14GhwpXno4-5nd4GEyXgyve7Pbq-lwMOuJkGDao1IKLmIWFTEVolCChUQqHicFb38OI44VFDJkFJjAPFFxFjGWYBEnlBApMesGF7vctbMvDfg6X9nGmfZkTnHK4jSLUtZS_R0lnPXegcrXTlfcbXKC823N-bbmfF9zK2Q74U2XsPmHzgejyc2f-w24NoVq</recordid><startdate>20180808</startdate><enddate>20180808</enddate><creator>Vural, Mert</creator><creator>Pena‐Francesch, Abdon</creator><creator>Bars‐Pomes, Joan</creator><creator>Jung, Huihun</creator><creator>Gudapati, Hemanth</creator><creator>Hatter, Christine B.</creator><creator>Allen, Benjamin D.</creator><creator>Anasori, Babak</creator><creator>Ozbolat, Ibrahim T.</creator><creator>Gogotsi, Yury</creator><creator>Demirel, Melik C.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20180808</creationdate><title>Inkjet Printing of Self‐Assembled 2D Titanium Carbide and Protein Electrodes for Stimuli‐Responsive Electromagnetic Shielding</title><author>Vural, Mert ; Pena‐Francesch, Abdon ; Bars‐Pomes, Joan ; Jung, Huihun ; Gudapati, Hemanth ; Hatter, Christine B. ; Allen, Benjamin D. ; Anasori, Babak ; Ozbolat, Ibrahim T. ; Gogotsi, Yury ; Demirel, Melik C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4102-2ddcac635b62ccbfc341dfa67ba20145a0febd432e3c0a7f6953370c67211dd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Conductivity</topic><topic>Deformation effects</topic><topic>Electrical resistivity</topic><topic>Electrodes</topic><topic>electromagnetic interference shielding</topic><topic>Electromagnetic shielding</topic><topic>Flexible components</topic><topic>Formulations</topic><topic>Glass substrates</topic><topic>Graphene</topic><topic>Inkjet printing</topic><topic>Inks</topic><topic>Materials science</topic><topic>MXene</topic><topic>Polyethylene terephthalate</topic><topic>Proteins</topic><topic>responsive electrodes</topic><topic>Stimuli</topic><topic>synthetic protein</topic><topic>Titanium carbide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vural, Mert</creatorcontrib><creatorcontrib>Pena‐Francesch, Abdon</creatorcontrib><creatorcontrib>Bars‐Pomes, Joan</creatorcontrib><creatorcontrib>Jung, Huihun</creatorcontrib><creatorcontrib>Gudapati, Hemanth</creatorcontrib><creatorcontrib>Hatter, Christine B.</creatorcontrib><creatorcontrib>Allen, Benjamin D.</creatorcontrib><creatorcontrib>Anasori, Babak</creatorcontrib><creatorcontrib>Ozbolat, Ibrahim T.</creatorcontrib><creatorcontrib>Gogotsi, Yury</creatorcontrib><creatorcontrib>Demirel, Melik C.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vural, Mert</au><au>Pena‐Francesch, Abdon</au><au>Bars‐Pomes, Joan</au><au>Jung, Huihun</au><au>Gudapati, Hemanth</au><au>Hatter, Christine B.</au><au>Allen, Benjamin D.</au><au>Anasori, Babak</au><au>Ozbolat, Ibrahim T.</au><au>Gogotsi, Yury</au><au>Demirel, Melik C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inkjet Printing of Self‐Assembled 2D Titanium Carbide and Protein Electrodes for Stimuli‐Responsive Electromagnetic Shielding</atitle><jtitle>Advanced functional materials</jtitle><date>2018-08-08</date><risdate>2018</risdate><volume>28</volume><issue>32</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>2D titanium carbides (MXene) possess significant characteristics including high conductivity and electromagnetic interference shielding efficiency (EMI SE) that are important for applications in printed and flexible electronics. However, MXene‐based ink formulations are yet to be demonstrated for proper inkjet printing of MXene patterns. Here, tandem repeat synthetic proteins based on squid ring teeth (SRT) are employed as templates of molecular self‐assembly to engineer MXene inks that can be printed as stimuli‐responsive electrodes on various substrates including cellulose paper, glass, and flexible polyethylene terephthalate (PET). MXene electrodes printed on PET substrates are able to display electrical conductivity values as high as 1080 ± 175 S cm−1, which significantly exceeds electrical conductivity values of state‐of‐the‐art inkjet‐printed electrodes composed of other 2D materials including graphene (250 S cm−1) and reduced graphene oxide (340 S cm−1). Furthermore, this high electrical conductivity is sustained under excessive bending deformation. These flexible electrodes also exhibit effective EMI SE values reaching 50 dB at films with thicknesses of 1.35 µm, which mainly originate from their high electrical conductivity and layered structure.
Inkjet printing of 2D titanium carbide (MXene) crystals facilitated with the help of synthetic proteins offers novel sensor electrodes and effective electromagnetic shielding for printed electronics. This study presents an alternative method to alter solution properties of MXene sheets and making them suitable for inkjet printing using synthetic proteins.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201801972</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2018-08, Vol.28 (32), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2083689583 |
source | Access via Wiley Online Library |
subjects | Conductivity Deformation effects Electrical resistivity Electrodes electromagnetic interference shielding Electromagnetic shielding Flexible components Formulations Glass substrates Graphene Inkjet printing Inks Materials science MXene Polyethylene terephthalate Proteins responsive electrodes Stimuli synthetic protein Titanium carbide |
title | Inkjet Printing of Self‐Assembled 2D Titanium Carbide and Protein Electrodes for Stimuli‐Responsive Electromagnetic Shielding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T20%3A58%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inkjet%20Printing%20of%20Self%E2%80%90Assembled%202D%20Titanium%20Carbide%20and%20Protein%20Electrodes%20for%20Stimuli%E2%80%90Responsive%20Electromagnetic%20Shielding&rft.jtitle=Advanced%20functional%20materials&rft.au=Vural,%20Mert&rft.date=2018-08-08&rft.volume=28&rft.issue=32&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201801972&rft_dat=%3Cproquest_cross%3E2083689583%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2083689583&rft_id=info:pmid/&rfr_iscdi=true |