Use of non-adiabatic geometric phase for quantum computing by nuclear magnetic resonance
Geometric phases have stimulated researchers for its potential applications in many areas of science. One of them is fault-tolerant quantum computation. A preliminary requisite of quantum computation is the implementation of controlled logic gates by controlled dynamics of qubits. In controlled dyna...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2005-03 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Das, Ranabir Kumar, S K Karthick Kumar, Anil |
description | Geometric phases have stimulated researchers for its potential applications in many areas of science. One of them is fault-tolerant quantum computation. A preliminary requisite of quantum computation is the implementation of controlled logic gates by controlled dynamics of qubits. In controlled dynamics, one qubit undergoes coherent evolution and acquires appropriate phase, depending on the state of other qubits. If the evolution is geometric, then the phase acquired depend only on the geometry of the path executed, and is robust against certain types of errors. This phenomenon leads to an inherently fault-tolerant quantum computation. Here we suggest a technique of using non-adiabatic geometric phase for quantum computation, using selective excitation. In a two-qubit system, we selectively evolve a suitable subsystem where the control qubit is in state |1>, through a closed circuit. By this evolution, the target qubit gains a phase controlled by the state of the control qubit. Using these geometric phase gates we demonstrate implementation of Deutsch-Jozsa algorithm and Grover's search algorithm in a two-qubit system. |
doi_str_mv | 10.48550/arxiv.0503032 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083596634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083596634</sourcerecordid><originalsourceid>FETCH-proquest_journals_20835966343</originalsourceid><addsrcrecordid>eNqNi82qwjAQRoNwQfG6dR1wXR2Tpta1KD6AgjsZ67RW7KTmR_TtreADuPoOnPMJMZ7DNM2NgRm6Z_2YggENWvXEQGk9T_JUqb4YeX8FAJUtlDF6IA57T9KWki0neK7xhKEuZEW2oeA6ai_YBaV18h6RQ2xkYZs2hporeXpJjsWN0MkGK6bP05G3jFzQv_gr8eZp9N2hmGzWu9U2aZ29R_LheLXRcaeOCnJtllmmU_1b9QaaHUf3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083596634</pqid></control><display><type>article</type><title>Use of non-adiabatic geometric phase for quantum computing by nuclear magnetic resonance</title><source>Free E- Journals</source><creator>Das, Ranabir ; Kumar, S K Karthick ; Kumar, Anil</creator><creatorcontrib>Das, Ranabir ; Kumar, S K Karthick ; Kumar, Anil</creatorcontrib><description>Geometric phases have stimulated researchers for its potential applications in many areas of science. One of them is fault-tolerant quantum computation. A preliminary requisite of quantum computation is the implementation of controlled logic gates by controlled dynamics of qubits. In controlled dynamics, one qubit undergoes coherent evolution and acquires appropriate phase, depending on the state of other qubits. If the evolution is geometric, then the phase acquired depend only on the geometry of the path executed, and is robust against certain types of errors. This phenomenon leads to an inherently fault-tolerant quantum computation. Here we suggest a technique of using non-adiabatic geometric phase for quantum computation, using selective excitation. In a two-qubit system, we selectively evolve a suitable subsystem where the control qubit is in state |1>, through a closed circuit. By this evolution, the target qubit gains a phase controlled by the state of the control qubit. Using these geometric phase gates we demonstrate implementation of Deutsch-Jozsa algorithm and Grover's search algorithm in a two-qubit system.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.0503032</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Adiabatic flow ; Computation ; Evolution ; Fault tolerance ; Gates (circuits) ; Logic circuits ; NMR ; Nuclear magnetic resonance ; Quantum computing ; Quantum theory ; Qubits (quantum computing) ; Search algorithms ; Subsystems</subject><ispartof>arXiv.org, 2005-03</ispartof><rights>Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at http://arxiv.org/abs/quant-ph/0503032.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785,27930</link.rule.ids></links><search><creatorcontrib>Das, Ranabir</creatorcontrib><creatorcontrib>Kumar, S K Karthick</creatorcontrib><creatorcontrib>Kumar, Anil</creatorcontrib><title>Use of non-adiabatic geometric phase for quantum computing by nuclear magnetic resonance</title><title>arXiv.org</title><description>Geometric phases have stimulated researchers for its potential applications in many areas of science. One of them is fault-tolerant quantum computation. A preliminary requisite of quantum computation is the implementation of controlled logic gates by controlled dynamics of qubits. In controlled dynamics, one qubit undergoes coherent evolution and acquires appropriate phase, depending on the state of other qubits. If the evolution is geometric, then the phase acquired depend only on the geometry of the path executed, and is robust against certain types of errors. This phenomenon leads to an inherently fault-tolerant quantum computation. Here we suggest a technique of using non-adiabatic geometric phase for quantum computation, using selective excitation. In a two-qubit system, we selectively evolve a suitable subsystem where the control qubit is in state |1>, through a closed circuit. By this evolution, the target qubit gains a phase controlled by the state of the control qubit. Using these geometric phase gates we demonstrate implementation of Deutsch-Jozsa algorithm and Grover's search algorithm in a two-qubit system.</description><subject>Adiabatic flow</subject><subject>Computation</subject><subject>Evolution</subject><subject>Fault tolerance</subject><subject>Gates (circuits)</subject><subject>Logic circuits</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Quantum computing</subject><subject>Quantum theory</subject><subject>Qubits (quantum computing)</subject><subject>Search algorithms</subject><subject>Subsystems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi82qwjAQRoNwQfG6dR1wXR2Tpta1KD6AgjsZ67RW7KTmR_TtreADuPoOnPMJMZ7DNM2NgRm6Z_2YggENWvXEQGk9T_JUqb4YeX8FAJUtlDF6IA57T9KWki0neK7xhKEuZEW2oeA6ai_YBaV18h6RQ2xkYZs2hporeXpJjsWN0MkGK6bP05G3jFzQv_gr8eZp9N2hmGzWu9U2aZ29R_LheLXRcaeOCnJtllmmU_1b9QaaHUf3</recordid><startdate>20050303</startdate><enddate>20050303</enddate><creator>Das, Ranabir</creator><creator>Kumar, S K Karthick</creator><creator>Kumar, Anil</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20050303</creationdate><title>Use of non-adiabatic geometric phase for quantum computing by nuclear magnetic resonance</title><author>Das, Ranabir ; Kumar, S K Karthick ; Kumar, Anil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20835966343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Adiabatic flow</topic><topic>Computation</topic><topic>Evolution</topic><topic>Fault tolerance</topic><topic>Gates (circuits)</topic><topic>Logic circuits</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Quantum computing</topic><topic>Quantum theory</topic><topic>Qubits (quantum computing)</topic><topic>Search algorithms</topic><topic>Subsystems</topic><toplevel>online_resources</toplevel><creatorcontrib>Das, Ranabir</creatorcontrib><creatorcontrib>Kumar, S K Karthick</creatorcontrib><creatorcontrib>Kumar, Anil</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Ranabir</au><au>Kumar, S K Karthick</au><au>Kumar, Anil</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Use of non-adiabatic geometric phase for quantum computing by nuclear magnetic resonance</atitle><jtitle>arXiv.org</jtitle><date>2005-03-03</date><risdate>2005</risdate><eissn>2331-8422</eissn><abstract>Geometric phases have stimulated researchers for its potential applications in many areas of science. One of them is fault-tolerant quantum computation. A preliminary requisite of quantum computation is the implementation of controlled logic gates by controlled dynamics of qubits. In controlled dynamics, one qubit undergoes coherent evolution and acquires appropriate phase, depending on the state of other qubits. If the evolution is geometric, then the phase acquired depend only on the geometry of the path executed, and is robust against certain types of errors. This phenomenon leads to an inherently fault-tolerant quantum computation. Here we suggest a technique of using non-adiabatic geometric phase for quantum computation, using selective excitation. In a two-qubit system, we selectively evolve a suitable subsystem where the control qubit is in state |1>, through a closed circuit. By this evolution, the target qubit gains a phase controlled by the state of the control qubit. Using these geometric phase gates we demonstrate implementation of Deutsch-Jozsa algorithm and Grover's search algorithm in a two-qubit system.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.0503032</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2005-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2083596634 |
source | Free E- Journals |
subjects | Adiabatic flow Computation Evolution Fault tolerance Gates (circuits) Logic circuits NMR Nuclear magnetic resonance Quantum computing Quantum theory Qubits (quantum computing) Search algorithms Subsystems |
title | Use of non-adiabatic geometric phase for quantum computing by nuclear magnetic resonance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T07%3A43%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Use%20of%20non-adiabatic%20geometric%20phase%20for%20quantum%20computing%20by%20nuclear%20magnetic%20resonance&rft.jtitle=arXiv.org&rft.au=Das,%20Ranabir&rft.date=2005-03-03&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.0503032&rft_dat=%3Cproquest%3E2083596634%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2083596634&rft_id=info:pmid/&rfr_iscdi=true |