An Analytic Framework for Maritime Situation Analysis
Maritime domain awareness is critical for protecting sea lanes, ports, harbors, offshore structures and critical infrastructures against common threats and illegal activities. Limited surveillance resources constrain maritime domain awareness and compromise full security coverage at all times. This...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2015-08 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Hamed Yaghoubi Shahir Glässer, Uwe Amir Yaghoubi Shahir Wehn, Hans |
description | Maritime domain awareness is critical for protecting sea lanes, ports, harbors, offshore structures and critical infrastructures against common threats and illegal activities. Limited surveillance resources constrain maritime domain awareness and compromise full security coverage at all times. This situation calls for innovative intelligent systems for interactive situation analysis to assist marine authorities and security personal in their routine surveillance operations. In this article, we propose a novel situation analysis framework to analyze marine traffic data and differentiate various scenarios of vessel engagement for the purpose of detecting anomalies of interest for marine vessels that operate over some period of time in relative proximity to each other. The proposed framework views vessel behavior as probabilistic processes and uses machine learning to model common vessel interaction patterns. We represent patterns of interest as left-to-right Hidden Markov Models and classify such patterns using Support Vector Machines. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083587999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083587999</sourcerecordid><originalsourceid>FETCH-proquest_journals_20835879993</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwdcxTcMxLzKksyUxWcCtKzE0tzy_KVkjLL1LwTSzKLMnMTVUIziwpTSzJzIeqLM4s5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFQMXF8UYGFsamFuaWlpbGxKkCAH64NQc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083587999</pqid></control><display><type>article</type><title>An Analytic Framework for Maritime Situation Analysis</title><source>Free E- Journals</source><creator>Hamed Yaghoubi Shahir ; Glässer, Uwe ; Amir Yaghoubi Shahir ; Wehn, Hans</creator><creatorcontrib>Hamed Yaghoubi Shahir ; Glässer, Uwe ; Amir Yaghoubi Shahir ; Wehn, Hans</creatorcontrib><description>Maritime domain awareness is critical for protecting sea lanes, ports, harbors, offshore structures and critical infrastructures against common threats and illegal activities. Limited surveillance resources constrain maritime domain awareness and compromise full security coverage at all times. This situation calls for innovative intelligent systems for interactive situation analysis to assist marine authorities and security personal in their routine surveillance operations. In this article, we propose a novel situation analysis framework to analyze marine traffic data and differentiate various scenarios of vessel engagement for the purpose of detecting anomalies of interest for marine vessels that operate over some period of time in relative proximity to each other. The proposed framework views vessel behavior as probabilistic processes and uses machine learning to model common vessel interaction patterns. We represent patterns of interest as left-to-right Hidden Markov Models and classify such patterns using Support Vector Machines.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Anomalies ; Harbors ; Interactive systems ; Machine learning ; Markov chains ; Offshore engineering ; Offshore structures ; Paths ; Security ; Support vector machines ; Surveillance ; Traffic information</subject><ispartof>arXiv.org, 2015-08</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Hamed Yaghoubi Shahir</creatorcontrib><creatorcontrib>Glässer, Uwe</creatorcontrib><creatorcontrib>Amir Yaghoubi Shahir</creatorcontrib><creatorcontrib>Wehn, Hans</creatorcontrib><title>An Analytic Framework for Maritime Situation Analysis</title><title>arXiv.org</title><description>Maritime domain awareness is critical for protecting sea lanes, ports, harbors, offshore structures and critical infrastructures against common threats and illegal activities. Limited surveillance resources constrain maritime domain awareness and compromise full security coverage at all times. This situation calls for innovative intelligent systems for interactive situation analysis to assist marine authorities and security personal in their routine surveillance operations. In this article, we propose a novel situation analysis framework to analyze marine traffic data and differentiate various scenarios of vessel engagement for the purpose of detecting anomalies of interest for marine vessels that operate over some period of time in relative proximity to each other. The proposed framework views vessel behavior as probabilistic processes and uses machine learning to model common vessel interaction patterns. We represent patterns of interest as left-to-right Hidden Markov Models and classify such patterns using Support Vector Machines.</description><subject>Anomalies</subject><subject>Harbors</subject><subject>Interactive systems</subject><subject>Machine learning</subject><subject>Markov chains</subject><subject>Offshore engineering</subject><subject>Offshore structures</subject><subject>Paths</subject><subject>Security</subject><subject>Support vector machines</subject><subject>Surveillance</subject><subject>Traffic information</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwdcxTcMxLzKksyUxWcCtKzE0tzy_KVkjLL1LwTSzKLMnMTVUIziwpTSzJzIeqLM4s5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFQMXF8UYGFsamFuaWlpbGxKkCAH64NQc</recordid><startdate>20150802</startdate><enddate>20150802</enddate><creator>Hamed Yaghoubi Shahir</creator><creator>Glässer, Uwe</creator><creator>Amir Yaghoubi Shahir</creator><creator>Wehn, Hans</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150802</creationdate><title>An Analytic Framework for Maritime Situation Analysis</title><author>Hamed Yaghoubi Shahir ; Glässer, Uwe ; Amir Yaghoubi Shahir ; Wehn, Hans</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20835879993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Anomalies</topic><topic>Harbors</topic><topic>Interactive systems</topic><topic>Machine learning</topic><topic>Markov chains</topic><topic>Offshore engineering</topic><topic>Offshore structures</topic><topic>Paths</topic><topic>Security</topic><topic>Support vector machines</topic><topic>Surveillance</topic><topic>Traffic information</topic><toplevel>online_resources</toplevel><creatorcontrib>Hamed Yaghoubi Shahir</creatorcontrib><creatorcontrib>Glässer, Uwe</creatorcontrib><creatorcontrib>Amir Yaghoubi Shahir</creatorcontrib><creatorcontrib>Wehn, Hans</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamed Yaghoubi Shahir</au><au>Glässer, Uwe</au><au>Amir Yaghoubi Shahir</au><au>Wehn, Hans</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>An Analytic Framework for Maritime Situation Analysis</atitle><jtitle>arXiv.org</jtitle><date>2015-08-02</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>Maritime domain awareness is critical for protecting sea lanes, ports, harbors, offshore structures and critical infrastructures against common threats and illegal activities. Limited surveillance resources constrain maritime domain awareness and compromise full security coverage at all times. This situation calls for innovative intelligent systems for interactive situation analysis to assist marine authorities and security personal in their routine surveillance operations. In this article, we propose a novel situation analysis framework to analyze marine traffic data and differentiate various scenarios of vessel engagement for the purpose of detecting anomalies of interest for marine vessels that operate over some period of time in relative proximity to each other. The proposed framework views vessel behavior as probabilistic processes and uses machine learning to model common vessel interaction patterns. We represent patterns of interest as left-to-right Hidden Markov Models and classify such patterns using Support Vector Machines.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2015-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2083587999 |
source | Free E- Journals |
subjects | Anomalies Harbors Interactive systems Machine learning Markov chains Offshore engineering Offshore structures Paths Security Support vector machines Surveillance Traffic information |
title | An Analytic Framework for Maritime Situation Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T22%3A38%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=An%20Analytic%20Framework%20for%20Maritime%20Situation%20Analysis&rft.jtitle=arXiv.org&rft.au=Hamed%20Yaghoubi%20Shahir&rft.date=2015-08-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2083587999%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2083587999&rft_id=info:pmid/&rfr_iscdi=true |