Iteratively reweighted algorithm for signals recovery with coherent tight frame

We consider the problem of compressed sensing with a coherent tight frame and design an iteratively reweighted least squares algorithm to solve it. To analyze the problem, we propose a sufficient null space property under a tight frame (sufficient D‐NSP). We show that, if a measurement matrix A sati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2018-09, Vol.41 (14), p.5481-5492
Hauptverfasser: Bi, Ning, Liang, Kaihao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5492
container_issue 14
container_start_page 5481
container_title Mathematical methods in the applied sciences
container_volume 41
creator Bi, Ning
Liang, Kaihao
description We consider the problem of compressed sensing with a coherent tight frame and design an iteratively reweighted least squares algorithm to solve it. To analyze the problem, we propose a sufficient null space property under a tight frame (sufficient D‐NSP). We show that, if a measurement matrix A satisfies the sufficient D‐NSP of order s, then an s‐sparse signal under the tight frame can be exactly recovered. Furthermore, if A satisfies the restricted isometric property with tight frame D of order 2bs, then it also satisfies the sufficient D‐NSP of order as with a 
doi_str_mv 10.1002/mma.5091
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2083586240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083586240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2931-be9e30a28cff8575505b0d0d65cb533fc6a8d1edfeacd31cc690dcb2a54edf493</originalsourceid><addsrcrecordid>eNp10E1rwzAMBmAzNljXDfYTDLvskk624zQ-lrKPQksv29k4ttymJE3nuC3590vWXXcSSI-EeAl5ZDBhAPylrs1EgmJXZMRAqYSl0-yajIBNIUk5S2_JXdvuACBnjI_IehExmFiesOpowDOWm21ER021aUIZtzX1TaBtudmbqu2BbU4YOnruR9Q2Wwy4jzQOS9QHU-M9ufG9xIe_OiZfb6-f849kuX5fzGfLxHIlWFKgQgGG59b7XE6lBFmAA5dJW0ghvM1M7hg6j8Y6wazNFDhbcCPTvpkqMSZPl7uH0HwfsY161xzD8KTmkAuZZzyFXj1flA1N2wb0-hDK2oROM9BDXLqPSw9x9TS50HNZYfev06vV7Nf_AAEDbVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083586240</pqid></control><display><type>article</type><title>Iteratively reweighted algorithm for signals recovery with coherent tight frame</title><source>Wiley Online Library</source><creator>Bi, Ning ; Liang, Kaihao</creator><creatorcontrib>Bi, Ning ; Liang, Kaihao</creatorcontrib><description>We consider the problem of compressed sensing with a coherent tight frame and design an iteratively reweighted least squares algorithm to solve it. To analyze the problem, we propose a sufficient null space property under a tight frame (sufficient D‐NSP). We show that, if a measurement matrix A satisfies the sufficient D‐NSP of order s, then an s‐sparse signal under the tight frame can be exactly recovered. Furthermore, if A satisfies the restricted isometric property with tight frame D of order 2bs, then it also satisfies the sufficient D‐NSP of order as with a &lt; b and b sufficiently large. We prove the convergence of the algorithm based on the sufficient D‐NSP and give the upper error bounds. In numerical experiments, we use the discrete cosine transform, discrete Fourier transform, and Haar wavelets to verify the effectiveness of this algorithm. With increasing measurement number, the signal‐to‐noise ratio increases monotonically.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.5091</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; compressed sensing ; Discrete cosine transform ; D‐RIP ; Fourier transforms ; iteratively reweighted method ; sufficient D‐NSP ; tight frame ; Wavelet analysis</subject><ispartof>Mathematical methods in the applied sciences, 2018-09, Vol.41 (14), p.5481-5492</ispartof><rights>Copyright © 2018 John Wiley &amp; Sons, Ltd.</rights><rights>2018 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2931-be9e30a28cff8575505b0d0d65cb533fc6a8d1edfeacd31cc690dcb2a54edf493</citedby><cites>FETCH-LOGICAL-c2931-be9e30a28cff8575505b0d0d65cb533fc6a8d1edfeacd31cc690dcb2a54edf493</cites><orcidid>0000-0002-3000-7137</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.5091$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.5091$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Bi, Ning</creatorcontrib><creatorcontrib>Liang, Kaihao</creatorcontrib><title>Iteratively reweighted algorithm for signals recovery with coherent tight frame</title><title>Mathematical methods in the applied sciences</title><description>We consider the problem of compressed sensing with a coherent tight frame and design an iteratively reweighted least squares algorithm to solve it. To analyze the problem, we propose a sufficient null space property under a tight frame (sufficient D‐NSP). We show that, if a measurement matrix A satisfies the sufficient D‐NSP of order s, then an s‐sparse signal under the tight frame can be exactly recovered. Furthermore, if A satisfies the restricted isometric property with tight frame D of order 2bs, then it also satisfies the sufficient D‐NSP of order as with a &lt; b and b sufficiently large. We prove the convergence of the algorithm based on the sufficient D‐NSP and give the upper error bounds. In numerical experiments, we use the discrete cosine transform, discrete Fourier transform, and Haar wavelets to verify the effectiveness of this algorithm. With increasing measurement number, the signal‐to‐noise ratio increases monotonically.</description><subject>Algorithms</subject><subject>compressed sensing</subject><subject>Discrete cosine transform</subject><subject>D‐RIP</subject><subject>Fourier transforms</subject><subject>iteratively reweighted method</subject><subject>sufficient D‐NSP</subject><subject>tight frame</subject><subject>Wavelet analysis</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10E1rwzAMBmAzNljXDfYTDLvskk624zQ-lrKPQksv29k4ttymJE3nuC3590vWXXcSSI-EeAl5ZDBhAPylrs1EgmJXZMRAqYSl0-yajIBNIUk5S2_JXdvuACBnjI_IehExmFiesOpowDOWm21ER021aUIZtzX1TaBtudmbqu2BbU4YOnruR9Q2Wwy4jzQOS9QHU-M9ufG9xIe_OiZfb6-f849kuX5fzGfLxHIlWFKgQgGG59b7XE6lBFmAA5dJW0ghvM1M7hg6j8Y6wazNFDhbcCPTvpkqMSZPl7uH0HwfsY161xzD8KTmkAuZZzyFXj1flA1N2wb0-hDK2oROM9BDXLqPSw9x9TS50HNZYfev06vV7Nf_AAEDbVg</recordid><startdate>20180930</startdate><enddate>20180930</enddate><creator>Bi, Ning</creator><creator>Liang, Kaihao</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-3000-7137</orcidid></search><sort><creationdate>20180930</creationdate><title>Iteratively reweighted algorithm for signals recovery with coherent tight frame</title><author>Bi, Ning ; Liang, Kaihao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2931-be9e30a28cff8575505b0d0d65cb533fc6a8d1edfeacd31cc690dcb2a54edf493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>compressed sensing</topic><topic>Discrete cosine transform</topic><topic>D‐RIP</topic><topic>Fourier transforms</topic><topic>iteratively reweighted method</topic><topic>sufficient D‐NSP</topic><topic>tight frame</topic><topic>Wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bi, Ning</creatorcontrib><creatorcontrib>Liang, Kaihao</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bi, Ning</au><au>Liang, Kaihao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iteratively reweighted algorithm for signals recovery with coherent tight frame</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2018-09-30</date><risdate>2018</risdate><volume>41</volume><issue>14</issue><spage>5481</spage><epage>5492</epage><pages>5481-5492</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>We consider the problem of compressed sensing with a coherent tight frame and design an iteratively reweighted least squares algorithm to solve it. To analyze the problem, we propose a sufficient null space property under a tight frame (sufficient D‐NSP). We show that, if a measurement matrix A satisfies the sufficient D‐NSP of order s, then an s‐sparse signal under the tight frame can be exactly recovered. Furthermore, if A satisfies the restricted isometric property with tight frame D of order 2bs, then it also satisfies the sufficient D‐NSP of order as with a &lt; b and b sufficiently large. We prove the convergence of the algorithm based on the sufficient D‐NSP and give the upper error bounds. In numerical experiments, we use the discrete cosine transform, discrete Fourier transform, and Haar wavelets to verify the effectiveness of this algorithm. With increasing measurement number, the signal‐to‐noise ratio increases monotonically.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.5091</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3000-7137</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2018-09, Vol.41 (14), p.5481-5492
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2083586240
source Wiley Online Library
subjects Algorithms
compressed sensing
Discrete cosine transform
D‐RIP
Fourier transforms
iteratively reweighted method
sufficient D‐NSP
tight frame
Wavelet analysis
title Iteratively reweighted algorithm for signals recovery with coherent tight frame
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T03%3A16%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iteratively%20reweighted%20algorithm%20for%20signals%20recovery%20with%20coherent%20tight%20frame&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Bi,%20Ning&rft.date=2018-09-30&rft.volume=41&rft.issue=14&rft.spage=5481&rft.epage=5492&rft.pages=5481-5492&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.5091&rft_dat=%3Cproquest_cross%3E2083586240%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2083586240&rft_id=info:pmid/&rfr_iscdi=true