Existence and Uniqueness of Proper Scoring Rules

To discuss the existence and uniqueness of proper scoring rules one needs to extend the associated entropy functions as sublinear functions to the conic hull of the prediction set. In some natural function spaces, such as the Lebesgue \(L^p\)-spaces over \(\mathbb R^d\), the positive cones have empt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2015-09
1. Verfasser: Ovcharov, Evgeni Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ovcharov, Evgeni Y
description To discuss the existence and uniqueness of proper scoring rules one needs to extend the associated entropy functions as sublinear functions to the conic hull of the prediction set. In some natural function spaces, such as the Lebesgue \(L^p\)-spaces over \(\mathbb R^d\), the positive cones have empty interior. Entropy functions defined on such cones have only directional derivatives. Certain entropies may be further extended continuously to open cones in normed spaces containing signed densities. The extended densities are Gâteaux differentiable except on a negligible set and have everywhere continuous subgradients due to the supporting hyperplane theorem. We introduce the necessary framework from analysis and algebra that allows us to give an affirmative answer to the titular question of the paper. As a result of this, we give a formal sense in which entropy functions have uniquely associated proper scoring rules. We illustrate our framework by studying the derivatives and subgradients of the following three prototypical entropies: Shannon entropy, Hyv\"arinen entropy, and quadratic entropy.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083532378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083532378</sourcerecordid><originalsourceid>FETCH-proquest_journals_20835323783</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwcK3ILC5JzUtOVUjMS1EIzcssLE3NSy0uVshPUwgoyi9ILVIITs4vysxLVwgqzUkt5mFgTUvMKU7lhdLcDMpuriHOHroFRflArcUl8Vn5pUV5QKl4IwMLY1NjI2NzC2PiVAEAYNMy_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083532378</pqid></control><display><type>article</type><title>Existence and Uniqueness of Proper Scoring Rules</title><source>Free E- Journals</source><creator>Ovcharov, Evgeni Y</creator><creatorcontrib>Ovcharov, Evgeni Y</creatorcontrib><description>To discuss the existence and uniqueness of proper scoring rules one needs to extend the associated entropy functions as sublinear functions to the conic hull of the prediction set. In some natural function spaces, such as the Lebesgue \(L^p\)-spaces over \(\mathbb R^d\), the positive cones have empty interior. Entropy functions defined on such cones have only directional derivatives. Certain entropies may be further extended continuously to open cones in normed spaces containing signed densities. The extended densities are Gâteaux differentiable except on a negligible set and have everywhere continuous subgradients due to the supporting hyperplane theorem. We introduce the necessary framework from analysis and algebra that allows us to give an affirmative answer to the titular question of the paper. As a result of this, we give a formal sense in which entropy functions have uniquely associated proper scoring rules. We illustrate our framework by studying the derivatives and subgradients of the following three prototypical entropies: Shannon entropy, Hyv\"arinen entropy, and quadratic entropy.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cones ; Derivatives ; Entropy ; Entropy (Information theory) ; Function space ; Hyperplanes ; Mathematical analysis ; Uniqueness</subject><ispartof>arXiv.org, 2015-09</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Ovcharov, Evgeni Y</creatorcontrib><title>Existence and Uniqueness of Proper Scoring Rules</title><title>arXiv.org</title><description>To discuss the existence and uniqueness of proper scoring rules one needs to extend the associated entropy functions as sublinear functions to the conic hull of the prediction set. In some natural function spaces, such as the Lebesgue \(L^p\)-spaces over \(\mathbb R^d\), the positive cones have empty interior. Entropy functions defined on such cones have only directional derivatives. Certain entropies may be further extended continuously to open cones in normed spaces containing signed densities. The extended densities are Gâteaux differentiable except on a negligible set and have everywhere continuous subgradients due to the supporting hyperplane theorem. We introduce the necessary framework from analysis and algebra that allows us to give an affirmative answer to the titular question of the paper. As a result of this, we give a formal sense in which entropy functions have uniquely associated proper scoring rules. We illustrate our framework by studying the derivatives and subgradients of the following three prototypical entropies: Shannon entropy, Hyv\"arinen entropy, and quadratic entropy.</description><subject>Cones</subject><subject>Derivatives</subject><subject>Entropy</subject><subject>Entropy (Information theory)</subject><subject>Function space</subject><subject>Hyperplanes</subject><subject>Mathematical analysis</subject><subject>Uniqueness</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwcK3ILC5JzUtOVUjMS1EIzcssLE3NSy0uVshPUwgoyi9ILVIITs4vysxLVwgqzUkt5mFgTUvMKU7lhdLcDMpuriHOHroFRflArcUl8Vn5pUV5QKl4IwMLY1NjI2NzC2PiVAEAYNMy_w</recordid><startdate>20150910</startdate><enddate>20150910</enddate><creator>Ovcharov, Evgeni Y</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150910</creationdate><title>Existence and Uniqueness of Proper Scoring Rules</title><author>Ovcharov, Evgeni Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20835323783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cones</topic><topic>Derivatives</topic><topic>Entropy</topic><topic>Entropy (Information theory)</topic><topic>Function space</topic><topic>Hyperplanes</topic><topic>Mathematical analysis</topic><topic>Uniqueness</topic><toplevel>online_resources</toplevel><creatorcontrib>Ovcharov, Evgeni Y</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ovcharov, Evgeni Y</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Existence and Uniqueness of Proper Scoring Rules</atitle><jtitle>arXiv.org</jtitle><date>2015-09-10</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>To discuss the existence and uniqueness of proper scoring rules one needs to extend the associated entropy functions as sublinear functions to the conic hull of the prediction set. In some natural function spaces, such as the Lebesgue \(L^p\)-spaces over \(\mathbb R^d\), the positive cones have empty interior. Entropy functions defined on such cones have only directional derivatives. Certain entropies may be further extended continuously to open cones in normed spaces containing signed densities. The extended densities are Gâteaux differentiable except on a negligible set and have everywhere continuous subgradients due to the supporting hyperplane theorem. We introduce the necessary framework from analysis and algebra that allows us to give an affirmative answer to the titular question of the paper. As a result of this, we give a formal sense in which entropy functions have uniquely associated proper scoring rules. We illustrate our framework by studying the derivatives and subgradients of the following three prototypical entropies: Shannon entropy, Hyv\"arinen entropy, and quadratic entropy.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2015-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2083532378
source Free E- Journals
subjects Cones
Derivatives
Entropy
Entropy (Information theory)
Function space
Hyperplanes
Mathematical analysis
Uniqueness
title Existence and Uniqueness of Proper Scoring Rules
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A02%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Existence%20and%20Uniqueness%20of%20Proper%20Scoring%20Rules&rft.jtitle=arXiv.org&rft.au=Ovcharov,%20Evgeni%20Y&rft.date=2015-09-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2083532378%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2083532378&rft_id=info:pmid/&rfr_iscdi=true