Existence and Uniqueness of Proper Scoring Rules
To discuss the existence and uniqueness of proper scoring rules one needs to extend the associated entropy functions as sublinear functions to the conic hull of the prediction set. In some natural function spaces, such as the Lebesgue \(L^p\)-spaces over \(\mathbb R^d\), the positive cones have empt...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2015-09 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ovcharov, Evgeni Y |
description | To discuss the existence and uniqueness of proper scoring rules one needs to extend the associated entropy functions as sublinear functions to the conic hull of the prediction set. In some natural function spaces, such as the Lebesgue \(L^p\)-spaces over \(\mathbb R^d\), the positive cones have empty interior. Entropy functions defined on such cones have only directional derivatives. Certain entropies may be further extended continuously to open cones in normed spaces containing signed densities. The extended densities are Gâteaux differentiable except on a negligible set and have everywhere continuous subgradients due to the supporting hyperplane theorem. We introduce the necessary framework from analysis and algebra that allows us to give an affirmative answer to the titular question of the paper. As a result of this, we give a formal sense in which entropy functions have uniquely associated proper scoring rules. We illustrate our framework by studying the derivatives and subgradients of the following three prototypical entropies: Shannon entropy, Hyv\"arinen entropy, and quadratic entropy. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083532378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083532378</sourcerecordid><originalsourceid>FETCH-proquest_journals_20835323783</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwcK3ILC5JzUtOVUjMS1EIzcssLE3NSy0uVshPUwgoyi9ILVIITs4vysxLVwgqzUkt5mFgTUvMKU7lhdLcDMpuriHOHroFRflArcUl8Vn5pUV5QKl4IwMLY1NjI2NzC2PiVAEAYNMy_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083532378</pqid></control><display><type>article</type><title>Existence and Uniqueness of Proper Scoring Rules</title><source>Free E- Journals</source><creator>Ovcharov, Evgeni Y</creator><creatorcontrib>Ovcharov, Evgeni Y</creatorcontrib><description>To discuss the existence and uniqueness of proper scoring rules one needs to extend the associated entropy functions as sublinear functions to the conic hull of the prediction set. In some natural function spaces, such as the Lebesgue \(L^p\)-spaces over \(\mathbb R^d\), the positive cones have empty interior. Entropy functions defined on such cones have only directional derivatives. Certain entropies may be further extended continuously to open cones in normed spaces containing signed densities. The extended densities are Gâteaux differentiable except on a negligible set and have everywhere continuous subgradients due to the supporting hyperplane theorem. We introduce the necessary framework from analysis and algebra that allows us to give an affirmative answer to the titular question of the paper. As a result of this, we give a formal sense in which entropy functions have uniquely associated proper scoring rules. We illustrate our framework by studying the derivatives and subgradients of the following three prototypical entropies: Shannon entropy, Hyv\"arinen entropy, and quadratic entropy.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cones ; Derivatives ; Entropy ; Entropy (Information theory) ; Function space ; Hyperplanes ; Mathematical analysis ; Uniqueness</subject><ispartof>arXiv.org, 2015-09</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Ovcharov, Evgeni Y</creatorcontrib><title>Existence and Uniqueness of Proper Scoring Rules</title><title>arXiv.org</title><description>To discuss the existence and uniqueness of proper scoring rules one needs to extend the associated entropy functions as sublinear functions to the conic hull of the prediction set. In some natural function spaces, such as the Lebesgue \(L^p\)-spaces over \(\mathbb R^d\), the positive cones have empty interior. Entropy functions defined on such cones have only directional derivatives. Certain entropies may be further extended continuously to open cones in normed spaces containing signed densities. The extended densities are Gâteaux differentiable except on a negligible set and have everywhere continuous subgradients due to the supporting hyperplane theorem. We introduce the necessary framework from analysis and algebra that allows us to give an affirmative answer to the titular question of the paper. As a result of this, we give a formal sense in which entropy functions have uniquely associated proper scoring rules. We illustrate our framework by studying the derivatives and subgradients of the following three prototypical entropies: Shannon entropy, Hyv\"arinen entropy, and quadratic entropy.</description><subject>Cones</subject><subject>Derivatives</subject><subject>Entropy</subject><subject>Entropy (Information theory)</subject><subject>Function space</subject><subject>Hyperplanes</subject><subject>Mathematical analysis</subject><subject>Uniqueness</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwcK3ILC5JzUtOVUjMS1EIzcssLE3NSy0uVshPUwgoyi9ILVIITs4vysxLVwgqzUkt5mFgTUvMKU7lhdLcDMpuriHOHroFRflArcUl8Vn5pUV5QKl4IwMLY1NjI2NzC2PiVAEAYNMy_w</recordid><startdate>20150910</startdate><enddate>20150910</enddate><creator>Ovcharov, Evgeni Y</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150910</creationdate><title>Existence and Uniqueness of Proper Scoring Rules</title><author>Ovcharov, Evgeni Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20835323783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cones</topic><topic>Derivatives</topic><topic>Entropy</topic><topic>Entropy (Information theory)</topic><topic>Function space</topic><topic>Hyperplanes</topic><topic>Mathematical analysis</topic><topic>Uniqueness</topic><toplevel>online_resources</toplevel><creatorcontrib>Ovcharov, Evgeni Y</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ovcharov, Evgeni Y</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Existence and Uniqueness of Proper Scoring Rules</atitle><jtitle>arXiv.org</jtitle><date>2015-09-10</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>To discuss the existence and uniqueness of proper scoring rules one needs to extend the associated entropy functions as sublinear functions to the conic hull of the prediction set. In some natural function spaces, such as the Lebesgue \(L^p\)-spaces over \(\mathbb R^d\), the positive cones have empty interior. Entropy functions defined on such cones have only directional derivatives. Certain entropies may be further extended continuously to open cones in normed spaces containing signed densities. The extended densities are Gâteaux differentiable except on a negligible set and have everywhere continuous subgradients due to the supporting hyperplane theorem. We introduce the necessary framework from analysis and algebra that allows us to give an affirmative answer to the titular question of the paper. As a result of this, we give a formal sense in which entropy functions have uniquely associated proper scoring rules. We illustrate our framework by studying the derivatives and subgradients of the following three prototypical entropies: Shannon entropy, Hyv\"arinen entropy, and quadratic entropy.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2015-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2083532378 |
source | Free E- Journals |
subjects | Cones Derivatives Entropy Entropy (Information theory) Function space Hyperplanes Mathematical analysis Uniqueness |
title | Existence and Uniqueness of Proper Scoring Rules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A02%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Existence%20and%20Uniqueness%20of%20Proper%20Scoring%20Rules&rft.jtitle=arXiv.org&rft.au=Ovcharov,%20Evgeni%20Y&rft.date=2015-09-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2083532378%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2083532378&rft_id=info:pmid/&rfr_iscdi=true |