Predicting SLA Violations in Real Time using Online Machine Learning
Detecting faults and SLA violations in a timely manner is critical for telecom providers, in order to avoid loss in business, revenue and reputation. At the same time predicting SLA violations for user services in telecom environments is difficult, due to time-varying user demands and infrastructure...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2015-09 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ahmed, Jawwad Johnsson, Andreas Yanggratoke, Rerngvit Ardelius, John Flinta, Christofer Stadler, Rolf |
description | Detecting faults and SLA violations in a timely manner is critical for telecom providers, in order to avoid loss in business, revenue and reputation. At the same time predicting SLA violations for user services in telecom environments is difficult, due to time-varying user demands and infrastructure load conditions. In this paper, we propose a service-agnostic online learning approach, whereby the behavior of the system is learned on the fly, in order to predict client-side SLA violations. The approach uses device-level metrics, which are collected in a streaming fashion on the server side. Our results show that the approach can produce highly accurate predictions (>90% classification accuracy and < 10% false alarm rate) in scenarios where SLA violations are predicted for a video-on-demand service under changing load patterns. The paper also highlight the limitations of traditional offline learning methods, which perform significantly worse in many of the considered scenarios. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083379977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083379977</sourcerecordid><originalsourceid>FETCH-proquest_journals_20833799773</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3CLguxMSadil-cFFRtLgtoT71lfiiSXt_K3gAVwMzM2CRVGqWZHMpRywOoRFCyIWWaaoitj56uGLdIt35uVjyCzprWnQUOBI_gbG8xCfwLnyPA1kk4HtTP74swHjq_YQNb8YGiH8cs-l2U652ycu7dwehrRrXeepTJUWmlM5zrdV_1wfK6znC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083379977</pqid></control><display><type>article</type><title>Predicting SLA Violations in Real Time using Online Machine Learning</title><source>Free E- Journals</source><creator>Ahmed, Jawwad ; Johnsson, Andreas ; Yanggratoke, Rerngvit ; Ardelius, John ; Flinta, Christofer ; Stadler, Rolf</creator><creatorcontrib>Ahmed, Jawwad ; Johnsson, Andreas ; Yanggratoke, Rerngvit ; Ardelius, John ; Flinta, Christofer ; Stadler, Rolf</creatorcontrib><description>Detecting faults and SLA violations in a timely manner is critical for telecom providers, in order to avoid loss in business, revenue and reputation. At the same time predicting SLA violations for user services in telecom environments is difficult, due to time-varying user demands and infrastructure load conditions. In this paper, we propose a service-agnostic online learning approach, whereby the behavior of the system is learned on the fly, in order to predict client-side SLA violations. The approach uses device-level metrics, which are collected in a streaming fashion on the server side. Our results show that the approach can produce highly accurate predictions (>90% classification accuracy and < 10% false alarm rate) in scenarios where SLA violations are predicted for a video-on-demand service under changing load patterns. The paper also highlight the limitations of traditional offline learning methods, which perform significantly worse in many of the considered scenarios.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Distance learning ; False alarms ; Fault detection ; Machine learning ; Predictions ; Telecommunications ; Video on demand ; Violations</subject><ispartof>arXiv.org, 2015-09</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Ahmed, Jawwad</creatorcontrib><creatorcontrib>Johnsson, Andreas</creatorcontrib><creatorcontrib>Yanggratoke, Rerngvit</creatorcontrib><creatorcontrib>Ardelius, John</creatorcontrib><creatorcontrib>Flinta, Christofer</creatorcontrib><creatorcontrib>Stadler, Rolf</creatorcontrib><title>Predicting SLA Violations in Real Time using Online Machine Learning</title><title>arXiv.org</title><description>Detecting faults and SLA violations in a timely manner is critical for telecom providers, in order to avoid loss in business, revenue and reputation. At the same time predicting SLA violations for user services in telecom environments is difficult, due to time-varying user demands and infrastructure load conditions. In this paper, we propose a service-agnostic online learning approach, whereby the behavior of the system is learned on the fly, in order to predict client-side SLA violations. The approach uses device-level metrics, which are collected in a streaming fashion on the server side. Our results show that the approach can produce highly accurate predictions (>90% classification accuracy and < 10% false alarm rate) in scenarios where SLA violations are predicted for a video-on-demand service under changing load patterns. The paper also highlight the limitations of traditional offline learning methods, which perform significantly worse in many of the considered scenarios.</description><subject>Distance learning</subject><subject>False alarms</subject><subject>Fault detection</subject><subject>Machine learning</subject><subject>Predictions</subject><subject>Telecommunications</subject><subject>Video on demand</subject><subject>Violations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiksKwjAUAIMgWLR3CLguxMSadil-cFFRtLgtoT71lfiiSXt_K3gAVwMzM2CRVGqWZHMpRywOoRFCyIWWaaoitj56uGLdIt35uVjyCzprWnQUOBI_gbG8xCfwLnyPA1kk4HtTP74swHjq_YQNb8YGiH8cs-l2U652ycu7dwehrRrXeepTJUWmlM5zrdV_1wfK6znC</recordid><startdate>20150904</startdate><enddate>20150904</enddate><creator>Ahmed, Jawwad</creator><creator>Johnsson, Andreas</creator><creator>Yanggratoke, Rerngvit</creator><creator>Ardelius, John</creator><creator>Flinta, Christofer</creator><creator>Stadler, Rolf</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150904</creationdate><title>Predicting SLA Violations in Real Time using Online Machine Learning</title><author>Ahmed, Jawwad ; Johnsson, Andreas ; Yanggratoke, Rerngvit ; Ardelius, John ; Flinta, Christofer ; Stadler, Rolf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20833799773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Distance learning</topic><topic>False alarms</topic><topic>Fault detection</topic><topic>Machine learning</topic><topic>Predictions</topic><topic>Telecommunications</topic><topic>Video on demand</topic><topic>Violations</topic><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, Jawwad</creatorcontrib><creatorcontrib>Johnsson, Andreas</creatorcontrib><creatorcontrib>Yanggratoke, Rerngvit</creatorcontrib><creatorcontrib>Ardelius, John</creatorcontrib><creatorcontrib>Flinta, Christofer</creatorcontrib><creatorcontrib>Stadler, Rolf</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmed, Jawwad</au><au>Johnsson, Andreas</au><au>Yanggratoke, Rerngvit</au><au>Ardelius, John</au><au>Flinta, Christofer</au><au>Stadler, Rolf</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Predicting SLA Violations in Real Time using Online Machine Learning</atitle><jtitle>arXiv.org</jtitle><date>2015-09-04</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>Detecting faults and SLA violations in a timely manner is critical for telecom providers, in order to avoid loss in business, revenue and reputation. At the same time predicting SLA violations for user services in telecom environments is difficult, due to time-varying user demands and infrastructure load conditions. In this paper, we propose a service-agnostic online learning approach, whereby the behavior of the system is learned on the fly, in order to predict client-side SLA violations. The approach uses device-level metrics, which are collected in a streaming fashion on the server side. Our results show that the approach can produce highly accurate predictions (>90% classification accuracy and < 10% false alarm rate) in scenarios where SLA violations are predicted for a video-on-demand service under changing load patterns. The paper also highlight the limitations of traditional offline learning methods, which perform significantly worse in many of the considered scenarios.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2015-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2083379977 |
source | Free E- Journals |
subjects | Distance learning False alarms Fault detection Machine learning Predictions Telecommunications Video on demand Violations |
title | Predicting SLA Violations in Real Time using Online Machine Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A52%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Predicting%20SLA%20Violations%20in%20Real%20Time%20using%20Online%20Machine%20Learning&rft.jtitle=arXiv.org&rft.au=Ahmed,%20Jawwad&rft.date=2015-09-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2083379977%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2083379977&rft_id=info:pmid/&rfr_iscdi=true |