Predicting SLA Violations in Real Time using Online Machine Learning

Detecting faults and SLA violations in a timely manner is critical for telecom providers, in order to avoid loss in business, revenue and reputation. At the same time predicting SLA violations for user services in telecom environments is difficult, due to time-varying user demands and infrastructure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2015-09
Hauptverfasser: Ahmed, Jawwad, Johnsson, Andreas, Yanggratoke, Rerngvit, Ardelius, John, Flinta, Christofer, Stadler, Rolf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ahmed, Jawwad
Johnsson, Andreas
Yanggratoke, Rerngvit
Ardelius, John
Flinta, Christofer
Stadler, Rolf
description Detecting faults and SLA violations in a timely manner is critical for telecom providers, in order to avoid loss in business, revenue and reputation. At the same time predicting SLA violations for user services in telecom environments is difficult, due to time-varying user demands and infrastructure load conditions. In this paper, we propose a service-agnostic online learning approach, whereby the behavior of the system is learned on the fly, in order to predict client-side SLA violations. The approach uses device-level metrics, which are collected in a streaming fashion on the server side. Our results show that the approach can produce highly accurate predictions (>90% classification accuracy and < 10% false alarm rate) in scenarios where SLA violations are predicted for a video-on-demand service under changing load patterns. The paper also highlight the limitations of traditional offline learning methods, which perform significantly worse in many of the considered scenarios.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083379977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083379977</sourcerecordid><originalsourceid>FETCH-proquest_journals_20833799773</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3CLguxMSadil-cFFRtLgtoT71lfiiSXt_K3gAVwMzM2CRVGqWZHMpRywOoRFCyIWWaaoitj56uGLdIt35uVjyCzprWnQUOBI_gbG8xCfwLnyPA1kk4HtTP74swHjq_YQNb8YGiH8cs-l2U652ycu7dwehrRrXeepTJUWmlM5zrdV_1wfK6znC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083379977</pqid></control><display><type>article</type><title>Predicting SLA Violations in Real Time using Online Machine Learning</title><source>Free E- Journals</source><creator>Ahmed, Jawwad ; Johnsson, Andreas ; Yanggratoke, Rerngvit ; Ardelius, John ; Flinta, Christofer ; Stadler, Rolf</creator><creatorcontrib>Ahmed, Jawwad ; Johnsson, Andreas ; Yanggratoke, Rerngvit ; Ardelius, John ; Flinta, Christofer ; Stadler, Rolf</creatorcontrib><description>Detecting faults and SLA violations in a timely manner is critical for telecom providers, in order to avoid loss in business, revenue and reputation. At the same time predicting SLA violations for user services in telecom environments is difficult, due to time-varying user demands and infrastructure load conditions. In this paper, we propose a service-agnostic online learning approach, whereby the behavior of the system is learned on the fly, in order to predict client-side SLA violations. The approach uses device-level metrics, which are collected in a streaming fashion on the server side. Our results show that the approach can produce highly accurate predictions (&gt;90% classification accuracy and &lt; 10% false alarm rate) in scenarios where SLA violations are predicted for a video-on-demand service under changing load patterns. The paper also highlight the limitations of traditional offline learning methods, which perform significantly worse in many of the considered scenarios.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Distance learning ; False alarms ; Fault detection ; Machine learning ; Predictions ; Telecommunications ; Video on demand ; Violations</subject><ispartof>arXiv.org, 2015-09</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Ahmed, Jawwad</creatorcontrib><creatorcontrib>Johnsson, Andreas</creatorcontrib><creatorcontrib>Yanggratoke, Rerngvit</creatorcontrib><creatorcontrib>Ardelius, John</creatorcontrib><creatorcontrib>Flinta, Christofer</creatorcontrib><creatorcontrib>Stadler, Rolf</creatorcontrib><title>Predicting SLA Violations in Real Time using Online Machine Learning</title><title>arXiv.org</title><description>Detecting faults and SLA violations in a timely manner is critical for telecom providers, in order to avoid loss in business, revenue and reputation. At the same time predicting SLA violations for user services in telecom environments is difficult, due to time-varying user demands and infrastructure load conditions. In this paper, we propose a service-agnostic online learning approach, whereby the behavior of the system is learned on the fly, in order to predict client-side SLA violations. The approach uses device-level metrics, which are collected in a streaming fashion on the server side. Our results show that the approach can produce highly accurate predictions (&gt;90% classification accuracy and &lt; 10% false alarm rate) in scenarios where SLA violations are predicted for a video-on-demand service under changing load patterns. The paper also highlight the limitations of traditional offline learning methods, which perform significantly worse in many of the considered scenarios.</description><subject>Distance learning</subject><subject>False alarms</subject><subject>Fault detection</subject><subject>Machine learning</subject><subject>Predictions</subject><subject>Telecommunications</subject><subject>Video on demand</subject><subject>Violations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiksKwjAUAIMgWLR3CLguxMSadil-cFFRtLgtoT71lfiiSXt_K3gAVwMzM2CRVGqWZHMpRywOoRFCyIWWaaoitj56uGLdIt35uVjyCzprWnQUOBI_gbG8xCfwLnyPA1kk4HtTP74swHjq_YQNb8YGiH8cs-l2U652ycu7dwehrRrXeepTJUWmlM5zrdV_1wfK6znC</recordid><startdate>20150904</startdate><enddate>20150904</enddate><creator>Ahmed, Jawwad</creator><creator>Johnsson, Andreas</creator><creator>Yanggratoke, Rerngvit</creator><creator>Ardelius, John</creator><creator>Flinta, Christofer</creator><creator>Stadler, Rolf</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150904</creationdate><title>Predicting SLA Violations in Real Time using Online Machine Learning</title><author>Ahmed, Jawwad ; Johnsson, Andreas ; Yanggratoke, Rerngvit ; Ardelius, John ; Flinta, Christofer ; Stadler, Rolf</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20833799773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Distance learning</topic><topic>False alarms</topic><topic>Fault detection</topic><topic>Machine learning</topic><topic>Predictions</topic><topic>Telecommunications</topic><topic>Video on demand</topic><topic>Violations</topic><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, Jawwad</creatorcontrib><creatorcontrib>Johnsson, Andreas</creatorcontrib><creatorcontrib>Yanggratoke, Rerngvit</creatorcontrib><creatorcontrib>Ardelius, John</creatorcontrib><creatorcontrib>Flinta, Christofer</creatorcontrib><creatorcontrib>Stadler, Rolf</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmed, Jawwad</au><au>Johnsson, Andreas</au><au>Yanggratoke, Rerngvit</au><au>Ardelius, John</au><au>Flinta, Christofer</au><au>Stadler, Rolf</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Predicting SLA Violations in Real Time using Online Machine Learning</atitle><jtitle>arXiv.org</jtitle><date>2015-09-04</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>Detecting faults and SLA violations in a timely manner is critical for telecom providers, in order to avoid loss in business, revenue and reputation. At the same time predicting SLA violations for user services in telecom environments is difficult, due to time-varying user demands and infrastructure load conditions. In this paper, we propose a service-agnostic online learning approach, whereby the behavior of the system is learned on the fly, in order to predict client-side SLA violations. The approach uses device-level metrics, which are collected in a streaming fashion on the server side. Our results show that the approach can produce highly accurate predictions (&gt;90% classification accuracy and &lt; 10% false alarm rate) in scenarios where SLA violations are predicted for a video-on-demand service under changing load patterns. The paper also highlight the limitations of traditional offline learning methods, which perform significantly worse in many of the considered scenarios.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2015-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2083379977
source Free E- Journals
subjects Distance learning
False alarms
Fault detection
Machine learning
Predictions
Telecommunications
Video on demand
Violations
title Predicting SLA Violations in Real Time using Online Machine Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A52%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Predicting%20SLA%20Violations%20in%20Real%20Time%20using%20Online%20Machine%20Learning&rft.jtitle=arXiv.org&rft.au=Ahmed,%20Jawwad&rft.date=2015-09-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2083379977%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2083379977&rft_id=info:pmid/&rfr_iscdi=true