Deep-Plant: Plant Identification with convolutional neural networks

This paper studies convolutional neural networks (CNN) to learn unsupervised feature representations for 44 different plant species, collected at the Royal Botanic Gardens, Kew, England. To gain intuition on the chosen features from the CNN model (opposed to a 'black box' solution), a visu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2015-06
Hauptverfasser: Sue Han Lee, Chan, Chee Seng, Wilkin, Paul, Remagnino, Paolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Sue Han Lee
Chan, Chee Seng
Wilkin, Paul
Remagnino, Paolo
description This paper studies convolutional neural networks (CNN) to learn unsupervised feature representations for 44 different plant species, collected at the Royal Botanic Gardens, Kew, England. To gain intuition on the chosen features from the CNN model (opposed to a 'black box' solution), a visualisation technique based on the deconvolutional networks (DN) is utilized. It is found that venations of different order have been chosen to uniquely represent each of the plant species. Experimental results using these CNN features with different classifiers show consistency and superiority compared to the state-of-the art solutions which rely on hand-crafted features.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083282159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083282159</sourcerecordid><originalsourceid>FETCH-proquest_journals_20832821593</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwdklNLdANyEnMK7FSAFMKnimpeSWZaZnJiSWZ-XkK5ZklGQrJ-Xll-TmlIIHEHIW81NIiMFVSnl-UXczDwJqWmFOcyguluRmU3VxDnD10C4ryC0tTi0vis_JLi4Aai-ONDCyMjSyMDE0tjYlTBQAjOjqy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083282159</pqid></control><display><type>article</type><title>Deep-Plant: Plant Identification with convolutional neural networks</title><source>Free E- Journals</source><creator>Sue Han Lee ; Chan, Chee Seng ; Wilkin, Paul ; Remagnino, Paolo</creator><creatorcontrib>Sue Han Lee ; Chan, Chee Seng ; Wilkin, Paul ; Remagnino, Paolo</creatorcontrib><description>This paper studies convolutional neural networks (CNN) to learn unsupervised feature representations for 44 different plant species, collected at the Royal Botanic Gardens, Kew, England. To gain intuition on the chosen features from the CNN model (opposed to a 'black box' solution), a visualisation technique based on the deconvolutional networks (DN) is utilized. It is found that venations of different order have been chosen to uniquely represent each of the plant species. Experimental results using these CNN features with different classifiers show consistency and superiority compared to the state-of-the art solutions which rely on hand-crafted features.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Black boxes ; Flowers &amp; plants ; Neural networks</subject><ispartof>arXiv.org, 2015-06</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Sue Han Lee</creatorcontrib><creatorcontrib>Chan, Chee Seng</creatorcontrib><creatorcontrib>Wilkin, Paul</creatorcontrib><creatorcontrib>Remagnino, Paolo</creatorcontrib><title>Deep-Plant: Plant Identification with convolutional neural networks</title><title>arXiv.org</title><description>This paper studies convolutional neural networks (CNN) to learn unsupervised feature representations for 44 different plant species, collected at the Royal Botanic Gardens, Kew, England. To gain intuition on the chosen features from the CNN model (opposed to a 'black box' solution), a visualisation technique based on the deconvolutional networks (DN) is utilized. It is found that venations of different order have been chosen to uniquely represent each of the plant species. Experimental results using these CNN features with different classifiers show consistency and superiority compared to the state-of-the art solutions which rely on hand-crafted features.</description><subject>Artificial neural networks</subject><subject>Black boxes</subject><subject>Flowers &amp; plants</subject><subject>Neural networks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwdklNLdANyEnMK7FSAFMKnimpeSWZaZnJiSWZ-XkK5ZklGQrJ-Xll-TmlIIHEHIW81NIiMFVSnl-UXczDwJqWmFOcyguluRmU3VxDnD10C4ryC0tTi0vis_JLi4Aai-ONDCyMjSyMDE0tjYlTBQAjOjqy</recordid><startdate>20150628</startdate><enddate>20150628</enddate><creator>Sue Han Lee</creator><creator>Chan, Chee Seng</creator><creator>Wilkin, Paul</creator><creator>Remagnino, Paolo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150628</creationdate><title>Deep-Plant: Plant Identification with convolutional neural networks</title><author>Sue Han Lee ; Chan, Chee Seng ; Wilkin, Paul ; Remagnino, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20832821593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Artificial neural networks</topic><topic>Black boxes</topic><topic>Flowers &amp; plants</topic><topic>Neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Sue Han Lee</creatorcontrib><creatorcontrib>Chan, Chee Seng</creatorcontrib><creatorcontrib>Wilkin, Paul</creatorcontrib><creatorcontrib>Remagnino, Paolo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sue Han Lee</au><au>Chan, Chee Seng</au><au>Wilkin, Paul</au><au>Remagnino, Paolo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Deep-Plant: Plant Identification with convolutional neural networks</atitle><jtitle>arXiv.org</jtitle><date>2015-06-28</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>This paper studies convolutional neural networks (CNN) to learn unsupervised feature representations for 44 different plant species, collected at the Royal Botanic Gardens, Kew, England. To gain intuition on the chosen features from the CNN model (opposed to a 'black box' solution), a visualisation technique based on the deconvolutional networks (DN) is utilized. It is found that venations of different order have been chosen to uniquely represent each of the plant species. Experimental results using these CNN features with different classifiers show consistency and superiority compared to the state-of-the art solutions which rely on hand-crafted features.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2015-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2083282159
source Free E- Journals
subjects Artificial neural networks
Black boxes
Flowers & plants
Neural networks
title Deep-Plant: Plant Identification with convolutional neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A27%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Deep-Plant:%20Plant%20Identification%20with%20convolutional%20neural%20networks&rft.jtitle=arXiv.org&rft.au=Sue%20Han%20Lee&rft.date=2015-06-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2083282159%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2083282159&rft_id=info:pmid/&rfr_iscdi=true