Deep-Plant: Plant Identification with convolutional neural networks
This paper studies convolutional neural networks (CNN) to learn unsupervised feature representations for 44 different plant species, collected at the Royal Botanic Gardens, Kew, England. To gain intuition on the chosen features from the CNN model (opposed to a 'black box' solution), a visu...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2015-06 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Sue Han Lee Chan, Chee Seng Wilkin, Paul Remagnino, Paolo |
description | This paper studies convolutional neural networks (CNN) to learn unsupervised feature representations for 44 different plant species, collected at the Royal Botanic Gardens, Kew, England. To gain intuition on the chosen features from the CNN model (opposed to a 'black box' solution), a visualisation technique based on the deconvolutional networks (DN) is utilized. It is found that venations of different order have been chosen to uniquely represent each of the plant species. Experimental results using these CNN features with different classifiers show consistency and superiority compared to the state-of-the art solutions which rely on hand-crafted features. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083282159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083282159</sourcerecordid><originalsourceid>FETCH-proquest_journals_20832821593</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwdklNLdANyEnMK7FSAFMKnimpeSWZaZnJiSWZ-XkK5ZklGQrJ-Xll-TmlIIHEHIW81NIiMFVSnl-UXczDwJqWmFOcyguluRmU3VxDnD10C4ryC0tTi0vis_JLi4Aai-ONDCyMjSyMDE0tjYlTBQAjOjqy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083282159</pqid></control><display><type>article</type><title>Deep-Plant: Plant Identification with convolutional neural networks</title><source>Free E- Journals</source><creator>Sue Han Lee ; Chan, Chee Seng ; Wilkin, Paul ; Remagnino, Paolo</creator><creatorcontrib>Sue Han Lee ; Chan, Chee Seng ; Wilkin, Paul ; Remagnino, Paolo</creatorcontrib><description>This paper studies convolutional neural networks (CNN) to learn unsupervised feature representations for 44 different plant species, collected at the Royal Botanic Gardens, Kew, England. To gain intuition on the chosen features from the CNN model (opposed to a 'black box' solution), a visualisation technique based on the deconvolutional networks (DN) is utilized. It is found that venations of different order have been chosen to uniquely represent each of the plant species. Experimental results using these CNN features with different classifiers show consistency and superiority compared to the state-of-the art solutions which rely on hand-crafted features.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Black boxes ; Flowers & plants ; Neural networks</subject><ispartof>arXiv.org, 2015-06</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Sue Han Lee</creatorcontrib><creatorcontrib>Chan, Chee Seng</creatorcontrib><creatorcontrib>Wilkin, Paul</creatorcontrib><creatorcontrib>Remagnino, Paolo</creatorcontrib><title>Deep-Plant: Plant Identification with convolutional neural networks</title><title>arXiv.org</title><description>This paper studies convolutional neural networks (CNN) to learn unsupervised feature representations for 44 different plant species, collected at the Royal Botanic Gardens, Kew, England. To gain intuition on the chosen features from the CNN model (opposed to a 'black box' solution), a visualisation technique based on the deconvolutional networks (DN) is utilized. It is found that venations of different order have been chosen to uniquely represent each of the plant species. Experimental results using these CNN features with different classifiers show consistency and superiority compared to the state-of-the art solutions which rely on hand-crafted features.</description><subject>Artificial neural networks</subject><subject>Black boxes</subject><subject>Flowers & plants</subject><subject>Neural networks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwdklNLdANyEnMK7FSAFMKnimpeSWZaZnJiSWZ-XkK5ZklGQrJ-Xll-TmlIIHEHIW81NIiMFVSnl-UXczDwJqWmFOcyguluRmU3VxDnD10C4ryC0tTi0vis_JLi4Aai-ONDCyMjSyMDE0tjYlTBQAjOjqy</recordid><startdate>20150628</startdate><enddate>20150628</enddate><creator>Sue Han Lee</creator><creator>Chan, Chee Seng</creator><creator>Wilkin, Paul</creator><creator>Remagnino, Paolo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150628</creationdate><title>Deep-Plant: Plant Identification with convolutional neural networks</title><author>Sue Han Lee ; Chan, Chee Seng ; Wilkin, Paul ; Remagnino, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20832821593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Artificial neural networks</topic><topic>Black boxes</topic><topic>Flowers & plants</topic><topic>Neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Sue Han Lee</creatorcontrib><creatorcontrib>Chan, Chee Seng</creatorcontrib><creatorcontrib>Wilkin, Paul</creatorcontrib><creatorcontrib>Remagnino, Paolo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sue Han Lee</au><au>Chan, Chee Seng</au><au>Wilkin, Paul</au><au>Remagnino, Paolo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Deep-Plant: Plant Identification with convolutional neural networks</atitle><jtitle>arXiv.org</jtitle><date>2015-06-28</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>This paper studies convolutional neural networks (CNN) to learn unsupervised feature representations for 44 different plant species, collected at the Royal Botanic Gardens, Kew, England. To gain intuition on the chosen features from the CNN model (opposed to a 'black box' solution), a visualisation technique based on the deconvolutional networks (DN) is utilized. It is found that venations of different order have been chosen to uniquely represent each of the plant species. Experimental results using these CNN features with different classifiers show consistency and superiority compared to the state-of-the art solutions which rely on hand-crafted features.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2015-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2083282159 |
source | Free E- Journals |
subjects | Artificial neural networks Black boxes Flowers & plants Neural networks |
title | Deep-Plant: Plant Identification with convolutional neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A27%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Deep-Plant:%20Plant%20Identification%20with%20convolutional%20neural%20networks&rft.jtitle=arXiv.org&rft.au=Sue%20Han%20Lee&rft.date=2015-06-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2083282159%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2083282159&rft_id=info:pmid/&rfr_iscdi=true |