Determination of the blocking temperature of magnetic nanoparticles: The good, the bad and the ugly
In a magnetization vs. temperature (M vs. T) experiment, the blocking region of a magnetic nanoparticle (MNP) assembly is the interval of T values were the system begins to respond to an applied magnetic field H when heating the sample from the lower reachable temperature. The location of this regio...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2015-08 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Pedro Mendoza Zélis Bruvera, Ignacio Javier Calatayud, María Pilar Gerardo Fabián Goya Sánchez, Francisco Homero |
description | In a magnetization vs. temperature (M vs. T) experiment, the blocking region of a magnetic nanoparticle (MNP) assembly is the interval of T values were the system begins to respond to an applied magnetic field H when heating the sample from the lower reachable temperature. The location of this region is determined by the anisotropy energy barrier depending on the applied field H, the volume V, the magnetic anisotropy constant K of the MNPs and the observing time of the technique. In the general case of a polysized sample, a representative blocking temperature value \(T_B\) can be estimated from ZFC-FC experiments as a way to determine the effective anisotropy constant. In this work, a numerical solved Stoner-Wolfharth two level model with thermal agitation is used to simulate ZFC-FC curves of monosized and polysized samples and to determine the best method for obtaining a representative \(T_B\) value of polysized samples. The results corroborate a technique based on the T derivative of the difference between ZFC and FC curves proposed by Micha et al(the good) and demonstrate its relation with two alternative methods: the ZFC maximum (the bad) and inflection point (the ugly). The derivative method is then applied to experimental data, obtaining the \(T_B\) distribution of a polysized \(Fe_3O_4\) MNP sample suspended in hexane with an excellent agreement with TEM characterization. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083173110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083173110</sourcerecordid><originalsourceid>FETCH-proquest_journals_20831731103</originalsourceid><addsrcrecordid>eNqNi0kKwjAYRoMgWLR3CLi1kMHa4tYBD9B9ie3fmJomNcPC21uHA7j6HrzvzVDCOKdZuWVsgVLve0II2xUsz3mCmiMEcIMyIihrsO1wuAG-atvclZE4wDCCEyE6eLtBSANBNdgIY0fhJtTg97iaGmltu_nWosXCtB-OUj9XaN4J7SH97RKtz6fqcMlGZx8RfKh7G52ZVM1IyWnBKSX8v9cLz0xFmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083173110</pqid></control><display><type>article</type><title>Determination of the blocking temperature of magnetic nanoparticles: The good, the bad and the ugly</title><source>Free E- Journals</source><creator>Pedro Mendoza Zélis ; Bruvera, Ignacio Javier ; Calatayud, María Pilar ; Gerardo Fabián Goya ; Sánchez, Francisco Homero</creator><creatorcontrib>Pedro Mendoza Zélis ; Bruvera, Ignacio Javier ; Calatayud, María Pilar ; Gerardo Fabián Goya ; Sánchez, Francisco Homero</creatorcontrib><description>In a magnetization vs. temperature (M vs. T) experiment, the blocking region of a magnetic nanoparticle (MNP) assembly is the interval of T values were the system begins to respond to an applied magnetic field H when heating the sample from the lower reachable temperature. The location of this region is determined by the anisotropy energy barrier depending on the applied field H, the volume V, the magnetic anisotropy constant K of the MNPs and the observing time of the technique. In the general case of a polysized sample, a representative blocking temperature value \(T_B\) can be estimated from ZFC-FC experiments as a way to determine the effective anisotropy constant. In this work, a numerical solved Stoner-Wolfharth two level model with thermal agitation is used to simulate ZFC-FC curves of monosized and polysized samples and to determine the best method for obtaining a representative \(T_B\) value of polysized samples. The results corroborate a technique based on the T derivative of the difference between ZFC and FC curves proposed by Micha et al(the good) and demonstrate its relation with two alternative methods: the ZFC maximum (the bad) and inflection point (the ugly). The derivative method is then applied to experimental data, obtaining the \(T_B\) distribution of a polysized \(Fe_3O_4\) MNP sample suspended in hexane with an excellent agreement with TEM characterization.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Anisotropy ; Computer simulation ; Magnetic anisotropy ; Magnetism ; Mathematical models ; Nanoparticles</subject><ispartof>arXiv.org, 2015-08</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Pedro Mendoza Zélis</creatorcontrib><creatorcontrib>Bruvera, Ignacio Javier</creatorcontrib><creatorcontrib>Calatayud, María Pilar</creatorcontrib><creatorcontrib>Gerardo Fabián Goya</creatorcontrib><creatorcontrib>Sánchez, Francisco Homero</creatorcontrib><title>Determination of the blocking temperature of magnetic nanoparticles: The good, the bad and the ugly</title><title>arXiv.org</title><description>In a magnetization vs. temperature (M vs. T) experiment, the blocking region of a magnetic nanoparticle (MNP) assembly is the interval of T values were the system begins to respond to an applied magnetic field H when heating the sample from the lower reachable temperature. The location of this region is determined by the anisotropy energy barrier depending on the applied field H, the volume V, the magnetic anisotropy constant K of the MNPs and the observing time of the technique. In the general case of a polysized sample, a representative blocking temperature value \(T_B\) can be estimated from ZFC-FC experiments as a way to determine the effective anisotropy constant. In this work, a numerical solved Stoner-Wolfharth two level model with thermal agitation is used to simulate ZFC-FC curves of monosized and polysized samples and to determine the best method for obtaining a representative \(T_B\) value of polysized samples. The results corroborate a technique based on the T derivative of the difference between ZFC and FC curves proposed by Micha et al(the good) and demonstrate its relation with two alternative methods: the ZFC maximum (the bad) and inflection point (the ugly). The derivative method is then applied to experimental data, obtaining the \(T_B\) distribution of a polysized \(Fe_3O_4\) MNP sample suspended in hexane with an excellent agreement with TEM characterization.</description><subject>Anisotropy</subject><subject>Computer simulation</subject><subject>Magnetic anisotropy</subject><subject>Magnetism</subject><subject>Mathematical models</subject><subject>Nanoparticles</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi0kKwjAYRoMgWLR3CLi1kMHa4tYBD9B9ie3fmJomNcPC21uHA7j6HrzvzVDCOKdZuWVsgVLve0II2xUsz3mCmiMEcIMyIihrsO1wuAG-atvclZE4wDCCEyE6eLtBSANBNdgIY0fhJtTg97iaGmltu_nWosXCtB-OUj9XaN4J7SH97RKtz6fqcMlGZx8RfKh7G52ZVM1IyWnBKSX8v9cLz0xFmQ</recordid><startdate>20150818</startdate><enddate>20150818</enddate><creator>Pedro Mendoza Zélis</creator><creator>Bruvera, Ignacio Javier</creator><creator>Calatayud, María Pilar</creator><creator>Gerardo Fabián Goya</creator><creator>Sánchez, Francisco Homero</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150818</creationdate><title>Determination of the blocking temperature of magnetic nanoparticles: The good, the bad and the ugly</title><author>Pedro Mendoza Zélis ; Bruvera, Ignacio Javier ; Calatayud, María Pilar ; Gerardo Fabián Goya ; Sánchez, Francisco Homero</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20831731103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Anisotropy</topic><topic>Computer simulation</topic><topic>Magnetic anisotropy</topic><topic>Magnetism</topic><topic>Mathematical models</topic><topic>Nanoparticles</topic><toplevel>online_resources</toplevel><creatorcontrib>Pedro Mendoza Zélis</creatorcontrib><creatorcontrib>Bruvera, Ignacio Javier</creatorcontrib><creatorcontrib>Calatayud, María Pilar</creatorcontrib><creatorcontrib>Gerardo Fabián Goya</creatorcontrib><creatorcontrib>Sánchez, Francisco Homero</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pedro Mendoza Zélis</au><au>Bruvera, Ignacio Javier</au><au>Calatayud, María Pilar</au><au>Gerardo Fabián Goya</au><au>Sánchez, Francisco Homero</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Determination of the blocking temperature of magnetic nanoparticles: The good, the bad and the ugly</atitle><jtitle>arXiv.org</jtitle><date>2015-08-18</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>In a magnetization vs. temperature (M vs. T) experiment, the blocking region of a magnetic nanoparticle (MNP) assembly is the interval of T values were the system begins to respond to an applied magnetic field H when heating the sample from the lower reachable temperature. The location of this region is determined by the anisotropy energy barrier depending on the applied field H, the volume V, the magnetic anisotropy constant K of the MNPs and the observing time of the technique. In the general case of a polysized sample, a representative blocking temperature value \(T_B\) can be estimated from ZFC-FC experiments as a way to determine the effective anisotropy constant. In this work, a numerical solved Stoner-Wolfharth two level model with thermal agitation is used to simulate ZFC-FC curves of monosized and polysized samples and to determine the best method for obtaining a representative \(T_B\) value of polysized samples. The results corroborate a technique based on the T derivative of the difference between ZFC and FC curves proposed by Micha et al(the good) and demonstrate its relation with two alternative methods: the ZFC maximum (the bad) and inflection point (the ugly). The derivative method is then applied to experimental data, obtaining the \(T_B\) distribution of a polysized \(Fe_3O_4\) MNP sample suspended in hexane with an excellent agreement with TEM characterization.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2015-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2083173110 |
source | Free E- Journals |
subjects | Anisotropy Computer simulation Magnetic anisotropy Magnetism Mathematical models Nanoparticles |
title | Determination of the blocking temperature of magnetic nanoparticles: The good, the bad and the ugly |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T20%3A10%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Determination%20of%20the%20blocking%20temperature%20of%20magnetic%20nanoparticles:%20The%20good,%20the%20bad%20and%20the%20ugly&rft.jtitle=arXiv.org&rft.au=Pedro%20Mendoza%20Z%C3%A9lis&rft.date=2015-08-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2083173110%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2083173110&rft_id=info:pmid/&rfr_iscdi=true |