Maximum Matching in General Graphs Without Explicit Consideration of Blossoms Revisited
We reduce the problem of finding an augmenting path in a general graph to a reachability problem in a directed bipartite graph. A slight modification of depth-first search leads to an algorithm for finding such paths. Although this setting is equivalent to the traditional terminology of blossoms due...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2015-09 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Blum, Norbert |
description | We reduce the problem of finding an augmenting path in a general graph to a reachability problem in a directed bipartite graph. A slight modification of depth-first search leads to an algorithm for finding such paths. Although this setting is equivalent to the traditional terminology of blossoms due to Edmonds, there are some advantages. Mainly, this point of view enables the description of algorithms for the solution of matching problems without explicit analysis of blossoms, nested blossoms, and so on. Exemplary, we describe an efficient realization of the Hopcroft-Karp approach for the computation of a maximum cardinality matching in general graphs and a variant of Edmonds' primal-dual algorithm for the maximum weighted matching problem. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083134439</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083134439</sourcerecordid><originalsourceid>FETCH-proquest_journals_20831344393</originalsourceid><addsrcrecordid>eNqNysEKgkAUQNEhCJLyHx60FnRGy7aJ2cZNBC5l0DGf6Iz5xvDzc9EHtLqLezbM4UIEXhxyvmMuUef7Pj-deRQJhxW5XHCYB8ilrVrUL0ANmdJqkj1kkxxbggJta2YL6TL2WKGFxGjCeiUWjQbTwLU3RGYgeKgPElpVH9i2kT0p99c9O97SZ3L3xsm8Z0W27Mw86XWV3I9FIMJQXMR_6gtk0EHH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083134439</pqid></control><display><type>article</type><title>Maximum Matching in General Graphs Without Explicit Consideration of Blossoms Revisited</title><source>Free E- Journals</source><creator>Blum, Norbert</creator><creatorcontrib>Blum, Norbert</creatorcontrib><description>We reduce the problem of finding an augmenting path in a general graph to a reachability problem in a directed bipartite graph. A slight modification of depth-first search leads to an algorithm for finding such paths. Although this setting is equivalent to the traditional terminology of blossoms due to Edmonds, there are some advantages. Mainly, this point of view enables the description of algorithms for the solution of matching problems without explicit analysis of blossoms, nested blossoms, and so on. Exemplary, we describe an efficient realization of the Hopcroft-Karp approach for the computation of a maximum cardinality matching in general graphs and a variant of Edmonds' primal-dual algorithm for the maximum weighted matching problem.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Graph matching ; Graph theory ; Graphs</subject><ispartof>arXiv.org, 2015-09</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Blum, Norbert</creatorcontrib><title>Maximum Matching in General Graphs Without Explicit Consideration of Blossoms Revisited</title><title>arXiv.org</title><description>We reduce the problem of finding an augmenting path in a general graph to a reachability problem in a directed bipartite graph. A slight modification of depth-first search leads to an algorithm for finding such paths. Although this setting is equivalent to the traditional terminology of blossoms due to Edmonds, there are some advantages. Mainly, this point of view enables the description of algorithms for the solution of matching problems without explicit analysis of blossoms, nested blossoms, and so on. Exemplary, we describe an efficient realization of the Hopcroft-Karp approach for the computation of a maximum cardinality matching in general graphs and a variant of Edmonds' primal-dual algorithm for the maximum weighted matching problem.</description><subject>Algorithms</subject><subject>Graph matching</subject><subject>Graph theory</subject><subject>Graphs</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNysEKgkAUQNEhCJLyHx60FnRGy7aJ2cZNBC5l0DGf6Iz5xvDzc9EHtLqLezbM4UIEXhxyvmMuUef7Pj-deRQJhxW5XHCYB8ilrVrUL0ANmdJqkj1kkxxbggJta2YL6TL2WKGFxGjCeiUWjQbTwLU3RGYgeKgPElpVH9i2kT0p99c9O97SZ3L3xsm8Z0W27Mw86XWV3I9FIMJQXMR_6gtk0EHH</recordid><startdate>20150916</startdate><enddate>20150916</enddate><creator>Blum, Norbert</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150916</creationdate><title>Maximum Matching in General Graphs Without Explicit Consideration of Blossoms Revisited</title><author>Blum, Norbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20831344393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Graph matching</topic><topic>Graph theory</topic><topic>Graphs</topic><toplevel>online_resources</toplevel><creatorcontrib>Blum, Norbert</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blum, Norbert</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Maximum Matching in General Graphs Without Explicit Consideration of Blossoms Revisited</atitle><jtitle>arXiv.org</jtitle><date>2015-09-16</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>We reduce the problem of finding an augmenting path in a general graph to a reachability problem in a directed bipartite graph. A slight modification of depth-first search leads to an algorithm for finding such paths. Although this setting is equivalent to the traditional terminology of blossoms due to Edmonds, there are some advantages. Mainly, this point of view enables the description of algorithms for the solution of matching problems without explicit analysis of blossoms, nested blossoms, and so on. Exemplary, we describe an efficient realization of the Hopcroft-Karp approach for the computation of a maximum cardinality matching in general graphs and a variant of Edmonds' primal-dual algorithm for the maximum weighted matching problem.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2015-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2083134439 |
source | Free E- Journals |
subjects | Algorithms Graph matching Graph theory Graphs |
title | Maximum Matching in General Graphs Without Explicit Consideration of Blossoms Revisited |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T18%3A25%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Maximum%20Matching%20in%20General%20Graphs%20Without%20Explicit%20Consideration%20of%20Blossoms%20Revisited&rft.jtitle=arXiv.org&rft.au=Blum,%20Norbert&rft.date=2015-09-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2083134439%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2083134439&rft_id=info:pmid/&rfr_iscdi=true |