On the Incompleteness of Berger's List of Holonomy Representations

In 1955, Berger \cite{Ber} gave a list of irreducible reductive representations which can occur as the holonomy of a torsion-free affine connection. This list was stated to be complete up to possibly a finite number of missing entries. In this paper, we show that there is, in fact, an infinite famil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 1995-08
Hauptverfasser: Quo-Shin, Chi, Merkulov, Sergey A, Schwachhöfer, Lorenz J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Quo-Shin, Chi
Merkulov, Sergey A
Schwachhöfer, Lorenz J
description In 1955, Berger \cite{Ber} gave a list of irreducible reductive representations which can occur as the holonomy of a torsion-free affine connection. This list was stated to be complete up to possibly a finite number of missing entries. In this paper, we show that there is, in fact, an infinite family of representations which are missing from this list, thereby showing the incompleteness of Berger's classification. Moreover, we develop a method to construct torsion-free connections with prescribed holonomy, and use it to give a complete description of the torsion-free affine connections with these new holonomies. We also deduce some striking facts about their global behaviour.
doi_str_mv 10.48550/arxiv.9508014
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083118045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083118045</sourcerecordid><originalsourceid>FETCH-proquest_journals_20831180453</originalsourceid><addsrcrecordid>eNqNirEKwjAUAIMgWLSrc8DBqfqSNBrXiqIgCOIuRZ7a0iY1LxX9exX8AKeDu2NsKGCSGq1hmvtn8ZgsNBgQaYdFUimRmFTKHouJSgCQs7nUWkUs21sebsi39uzqpsKAFom4u_AM_RX9mPiuoPAVG1c56-oXP2DjkdCGPBTO0oB1L3lFGP_YZ6P16rjcJI139xYpnErXevtJJwlGCWEg1eq_6w38-D89</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083118045</pqid></control><display><type>article</type><title>On the Incompleteness of Berger's List of Holonomy Representations</title><source>Freely Accessible Journals</source><creator>Quo-Shin, Chi ; Merkulov, Sergey A ; Schwachhöfer, Lorenz J</creator><creatorcontrib>Quo-Shin, Chi ; Merkulov, Sergey A ; Schwachhöfer, Lorenz J</creatorcontrib><description>In 1955, Berger \cite{Ber} gave a list of irreducible reductive representations which can occur as the holonomy of a torsion-free affine connection. This list was stated to be complete up to possibly a finite number of missing entries. In this paper, we show that there is, in fact, an infinite family of representations which are missing from this list, thereby showing the incompleteness of Berger's classification. Moreover, we develop a method to construct torsion-free connections with prescribed holonomy, and use it to give a complete description of the torsion-free affine connections with these new holonomies. We also deduce some striking facts about their global behaviour.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.9508014</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Representations ; Torsion</subject><ispartof>arXiv.org, 1995-08</ispartof><rights>1995. This work is published under https://arxiv.org/licenses/assumed-1991-2003/license.html (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784,27916</link.rule.ids></links><search><creatorcontrib>Quo-Shin, Chi</creatorcontrib><creatorcontrib>Merkulov, Sergey A</creatorcontrib><creatorcontrib>Schwachhöfer, Lorenz J</creatorcontrib><title>On the Incompleteness of Berger's List of Holonomy Representations</title><title>arXiv.org</title><description>In 1955, Berger \cite{Ber} gave a list of irreducible reductive representations which can occur as the holonomy of a torsion-free affine connection. This list was stated to be complete up to possibly a finite number of missing entries. In this paper, we show that there is, in fact, an infinite family of representations which are missing from this list, thereby showing the incompleteness of Berger's classification. Moreover, we develop a method to construct torsion-free connections with prescribed holonomy, and use it to give a complete description of the torsion-free affine connections with these new holonomies. We also deduce some striking facts about their global behaviour.</description><subject>Representations</subject><subject>Torsion</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNirEKwjAUAIMgWLSrc8DBqfqSNBrXiqIgCOIuRZ7a0iY1LxX9exX8AKeDu2NsKGCSGq1hmvtn8ZgsNBgQaYdFUimRmFTKHouJSgCQs7nUWkUs21sebsi39uzqpsKAFom4u_AM_RX9mPiuoPAVG1c56-oXP2DjkdCGPBTO0oB1L3lFGP_YZ6P16rjcJI139xYpnErXevtJJwlGCWEg1eq_6w38-D89</recordid><startdate>19950830</startdate><enddate>19950830</enddate><creator>Quo-Shin, Chi</creator><creator>Merkulov, Sergey A</creator><creator>Schwachhöfer, Lorenz J</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>19950830</creationdate><title>On the Incompleteness of Berger's List of Holonomy Representations</title><author>Quo-Shin, Chi ; Merkulov, Sergey A ; Schwachhöfer, Lorenz J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20831180453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Representations</topic><topic>Torsion</topic><toplevel>online_resources</toplevel><creatorcontrib>Quo-Shin, Chi</creatorcontrib><creatorcontrib>Merkulov, Sergey A</creatorcontrib><creatorcontrib>Schwachhöfer, Lorenz J</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quo-Shin, Chi</au><au>Merkulov, Sergey A</au><au>Schwachhöfer, Lorenz J</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On the Incompleteness of Berger's List of Holonomy Representations</atitle><jtitle>arXiv.org</jtitle><date>1995-08-30</date><risdate>1995</risdate><eissn>2331-8422</eissn><abstract>In 1955, Berger \cite{Ber} gave a list of irreducible reductive representations which can occur as the holonomy of a torsion-free affine connection. This list was stated to be complete up to possibly a finite number of missing entries. In this paper, we show that there is, in fact, an infinite family of representations which are missing from this list, thereby showing the incompleteness of Berger's classification. Moreover, we develop a method to construct torsion-free connections with prescribed holonomy, and use it to give a complete description of the torsion-free affine connections with these new holonomies. We also deduce some striking facts about their global behaviour.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.9508014</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 1995-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2083118045
source Freely Accessible Journals
subjects Representations
Torsion
title On the Incompleteness of Berger's List of Holonomy Representations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T05%3A29%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20the%20Incompleteness%20of%20Berger's%20List%20of%20Holonomy%20Representations&rft.jtitle=arXiv.org&rft.au=Quo-Shin,%20Chi&rft.date=1995-08-30&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.9508014&rft_dat=%3Cproquest%3E2083118045%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2083118045&rft_id=info:pmid/&rfr_iscdi=true