Improved Sampling Algorithms in Lattice QCD

Reverse Monte Carlo (RMC) is an algorithm that incorporates stochastic modification of the action as part of the process that updates the fields in a Monte Carlo simulation. Such update moves have the potential of lowering or eliminating potential barriers that may cause inefficiencies in exploring...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2015-06
Hauptverfasser: Arjun Singh Gambhir, Orginos, Kostas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Arjun Singh Gambhir
Orginos, Kostas
description Reverse Monte Carlo (RMC) is an algorithm that incorporates stochastic modification of the action as part of the process that updates the fields in a Monte Carlo simulation. Such update moves have the potential of lowering or eliminating potential barriers that may cause inefficiencies in exploring the field configuration space. The highly successful Cluster algorithms for spin systems can be derived from the RMC framework. In this work we apply RMC ideas to pure gauge theory, aiming to alleviate the critical slowing down observed in the topological charge evolution as well as other long distance observables. We present various formulations of the basic idea and report on our numerical experiments with these algorithms.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2082676963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2082676963</sourcerecordid><originalsourceid>FETCH-proquest_journals_20826769633</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ9swtKMovS01RCE7MLcjJzEtXcMxJzy_KLMnILVbIzFPwSSwpyUxOVQh0duFhYE1LzClO5YXS3AzKbq4hzh66QBMKS1OLS-Kz8kuL8oBS8UYGFkArzCzNjI2JUwUAHnUwwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2082676963</pqid></control><display><type>article</type><title>Improved Sampling Algorithms in Lattice QCD</title><source>Free E- Journals</source><creator>Arjun Singh Gambhir ; Orginos, Kostas</creator><creatorcontrib>Arjun Singh Gambhir ; Orginos, Kostas</creatorcontrib><description>Reverse Monte Carlo (RMC) is an algorithm that incorporates stochastic modification of the action as part of the process that updates the fields in a Monte Carlo simulation. Such update moves have the potential of lowering or eliminating potential barriers that may cause inefficiencies in exploring the field configuration space. The highly successful Cluster algorithms for spin systems can be derived from the RMC framework. In this work we apply RMC ideas to pure gauge theory, aiming to alleviate the critical slowing down observed in the topological charge evolution as well as other long distance observables. We present various formulations of the basic idea and report on our numerical experiments with these algorithms.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Computer simulation ; Formulations ; Gauge theory ; Monte Carlo simulation ; Potential barriers ; Quantum chromodynamics</subject><ispartof>arXiv.org, 2015-06</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Arjun Singh Gambhir</creatorcontrib><creatorcontrib>Orginos, Kostas</creatorcontrib><title>Improved Sampling Algorithms in Lattice QCD</title><title>arXiv.org</title><description>Reverse Monte Carlo (RMC) is an algorithm that incorporates stochastic modification of the action as part of the process that updates the fields in a Monte Carlo simulation. Such update moves have the potential of lowering or eliminating potential barriers that may cause inefficiencies in exploring the field configuration space. The highly successful Cluster algorithms for spin systems can be derived from the RMC framework. In this work we apply RMC ideas to pure gauge theory, aiming to alleviate the critical slowing down observed in the topological charge evolution as well as other long distance observables. We present various formulations of the basic idea and report on our numerical experiments with these algorithms.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Formulations</subject><subject>Gauge theory</subject><subject>Monte Carlo simulation</subject><subject>Potential barriers</subject><subject>Quantum chromodynamics</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQ9swtKMovS01RCE7MLcjJzEtXcMxJzy_KLMnILVbIzFPwSSwpyUxOVQh0duFhYE1LzClO5YXS3AzKbq4hzh66QBMKS1OLS-Kz8kuL8oBS8UYGFkArzCzNjI2JUwUAHnUwwg</recordid><startdate>20150619</startdate><enddate>20150619</enddate><creator>Arjun Singh Gambhir</creator><creator>Orginos, Kostas</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150619</creationdate><title>Improved Sampling Algorithms in Lattice QCD</title><author>Arjun Singh Gambhir ; Orginos, Kostas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20826769633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Formulations</topic><topic>Gauge theory</topic><topic>Monte Carlo simulation</topic><topic>Potential barriers</topic><topic>Quantum chromodynamics</topic><toplevel>online_resources</toplevel><creatorcontrib>Arjun Singh Gambhir</creatorcontrib><creatorcontrib>Orginos, Kostas</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arjun Singh Gambhir</au><au>Orginos, Kostas</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Improved Sampling Algorithms in Lattice QCD</atitle><jtitle>arXiv.org</jtitle><date>2015-06-19</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>Reverse Monte Carlo (RMC) is an algorithm that incorporates stochastic modification of the action as part of the process that updates the fields in a Monte Carlo simulation. Such update moves have the potential of lowering or eliminating potential barriers that may cause inefficiencies in exploring the field configuration space. The highly successful Cluster algorithms for spin systems can be derived from the RMC framework. In this work we apply RMC ideas to pure gauge theory, aiming to alleviate the critical slowing down observed in the topological charge evolution as well as other long distance observables. We present various formulations of the basic idea and report on our numerical experiments with these algorithms.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2015-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2082676963
source Free E- Journals
subjects Algorithms
Computer simulation
Formulations
Gauge theory
Monte Carlo simulation
Potential barriers
Quantum chromodynamics
title Improved Sampling Algorithms in Lattice QCD
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A01%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Improved%20Sampling%20Algorithms%20in%20Lattice%20QCD&rft.jtitle=arXiv.org&rft.au=Arjun%20Singh%20Gambhir&rft.date=2015-06-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2082676963%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2082676963&rft_id=info:pmid/&rfr_iscdi=true