The positive even subalgebra of \(U_q(\mathfrak{sl}_2)\) and its finite-dimensional irreducible modules
The equitable presentation of \(U_q(\mathfrak{sl}_2)\) was introduced in 2006 by Ito, Terwilliger, and Weng. This presentation involves some generators \(x, y, y^{-1}, z\). It is known that \(\{x^r y^s z^t : r, t \in \mathbb{N}, s \in \mathbb{Z}\}\) is a basis for the \(\mathbb{K}\)-vector space \(U...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2015-06 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Alison Gordon Lynch |
description | The equitable presentation of \(U_q(\mathfrak{sl}_2)\) was introduced in 2006 by Ito, Terwilliger, and Weng. This presentation involves some generators \(x, y, y^{-1}, z\). It is known that \(\{x^r y^s z^t : r, t \in \mathbb{N}, s \in \mathbb{Z}\}\) is a basis for the \(\mathbb{K}\)-vector space \(U_q(\mathfrak{sl}_2)\). In 2013, Bockting-Conrad and Terwilliger introduced a subalgebra \(\mathcal{A}\) of \(U_q(\mathfrak{sl}_2)\) spanned by the elements \(\{x^r y^s z^t : r, s, t \in \mathbb{N}, r+s+t \ {\rm even}\}\). We give a presentation of \(\mathcal{A}\) by generators and relations. We also classify up to isomorphism the finite-dimensional irreducible \(\mathcal{A}\)-modules, under the assumption that \(q\) is not a root of unity. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2082676244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2082676244</sourcerecordid><originalsourceid>FETCH-proquest_journals_20826762443</originalsourceid><addsrcrecordid>eNqNjksKwjAUAIMgKNo7PHCji0JN62cvigfQXaGk9rV9miZtXuJGvLsuPICr2czAjMRUpuk63mdSTkTEfE-SRG53crNJp6K5tAi9ZfL0RMAnGuBQKt1g6RTYGvLltRiWead8Wzv1eLF-F3KVr0CZCsgz1GTIY1xRh4bJGqWBnMMq3KjUCJ2tgkaei3GtNGP040wsTsfL4Rz3zg4B2Rd3G9w35kIm--_eVmZZ-p_1AfVER4M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2082676244</pqid></control><display><type>article</type><title>The positive even subalgebra of \(U_q(\mathfrak{sl}_2)\) and its finite-dimensional irreducible modules</title><source>Free E- Journals</source><creator>Alison Gordon Lynch</creator><creatorcontrib>Alison Gordon Lynch</creatorcontrib><description>The equitable presentation of \(U_q(\mathfrak{sl}_2)\) was introduced in 2006 by Ito, Terwilliger, and Weng. This presentation involves some generators \(x, y, y^{-1}, z\). It is known that \(\{x^r y^s z^t : r, t \in \mathbb{N}, s \in \mathbb{Z}\}\) is a basis for the \(\mathbb{K}\)-vector space \(U_q(\mathfrak{sl}_2)\). In 2013, Bockting-Conrad and Terwilliger introduced a subalgebra \(\mathcal{A}\) of \(U_q(\mathfrak{sl}_2)\) spanned by the elements \(\{x^r y^s z^t : r, s, t \in \mathbb{N}, r+s+t \ {\rm even}\}\). We give a presentation of \(\mathcal{A}\) by generators and relations. We also classify up to isomorphism the finite-dimensional irreducible \(\mathcal{A}\)-modules, under the assumption that \(q\) is not a root of unity.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Generators ; Isomorphism ; Modules</subject><ispartof>arXiv.org, 2015-06</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Alison Gordon Lynch</creatorcontrib><title>The positive even subalgebra of \(U_q(\mathfrak{sl}_2)\) and its finite-dimensional irreducible modules</title><title>arXiv.org</title><description>The equitable presentation of \(U_q(\mathfrak{sl}_2)\) was introduced in 2006 by Ito, Terwilliger, and Weng. This presentation involves some generators \(x, y, y^{-1}, z\). It is known that \(\{x^r y^s z^t : r, t \in \mathbb{N}, s \in \mathbb{Z}\}\) is a basis for the \(\mathbb{K}\)-vector space \(U_q(\mathfrak{sl}_2)\). In 2013, Bockting-Conrad and Terwilliger introduced a subalgebra \(\mathcal{A}\) of \(U_q(\mathfrak{sl}_2)\) spanned by the elements \(\{x^r y^s z^t : r, s, t \in \mathbb{N}, r+s+t \ {\rm even}\}\). We give a presentation of \(\mathcal{A}\) by generators and relations. We also classify up to isomorphism the finite-dimensional irreducible \(\mathcal{A}\)-modules, under the assumption that \(q\) is not a root of unity.</description><subject>Generators</subject><subject>Isomorphism</subject><subject>Modules</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjksKwjAUAIMgKNo7PHCji0JN62cvigfQXaGk9rV9miZtXuJGvLsuPICr2czAjMRUpuk63mdSTkTEfE-SRG53crNJp6K5tAi9ZfL0RMAnGuBQKt1g6RTYGvLltRiWead8Wzv1eLF-F3KVr0CZCsgz1GTIY1xRh4bJGqWBnMMq3KjUCJ2tgkaei3GtNGP040wsTsfL4Rz3zg4B2Rd3G9w35kIm--_eVmZZ-p_1AfVER4M</recordid><startdate>20150605</startdate><enddate>20150605</enddate><creator>Alison Gordon Lynch</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150605</creationdate><title>The positive even subalgebra of \(U_q(\mathfrak{sl}_2)\) and its finite-dimensional irreducible modules</title><author>Alison Gordon Lynch</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20826762443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Generators</topic><topic>Isomorphism</topic><topic>Modules</topic><toplevel>online_resources</toplevel><creatorcontrib>Alison Gordon Lynch</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alison Gordon Lynch</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The positive even subalgebra of \(U_q(\mathfrak{sl}_2)\) and its finite-dimensional irreducible modules</atitle><jtitle>arXiv.org</jtitle><date>2015-06-05</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>The equitable presentation of \(U_q(\mathfrak{sl}_2)\) was introduced in 2006 by Ito, Terwilliger, and Weng. This presentation involves some generators \(x, y, y^{-1}, z\). It is known that \(\{x^r y^s z^t : r, t \in \mathbb{N}, s \in \mathbb{Z}\}\) is a basis for the \(\mathbb{K}\)-vector space \(U_q(\mathfrak{sl}_2)\). In 2013, Bockting-Conrad and Terwilliger introduced a subalgebra \(\mathcal{A}\) of \(U_q(\mathfrak{sl}_2)\) spanned by the elements \(\{x^r y^s z^t : r, s, t \in \mathbb{N}, r+s+t \ {\rm even}\}\). We give a presentation of \(\mathcal{A}\) by generators and relations. We also classify up to isomorphism the finite-dimensional irreducible \(\mathcal{A}\)-modules, under the assumption that \(q\) is not a root of unity.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2015-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2082676244 |
source | Free E- Journals |
subjects | Generators Isomorphism Modules |
title | The positive even subalgebra of \(U_q(\mathfrak{sl}_2)\) and its finite-dimensional irreducible modules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A54%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20positive%20even%20subalgebra%20of%20%5C(U_q(%5Cmathfrak%7Bsl%7D_2)%5C)%20and%20its%20finite-dimensional%20irreducible%20modules&rft.jtitle=arXiv.org&rft.au=Alison%20Gordon%20Lynch&rft.date=2015-06-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2082676244%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2082676244&rft_id=info:pmid/&rfr_iscdi=true |