Thermal noise of gram-scale cantilever flexures

We present measurements of thermal noise in niobium and aluminium flexures. Our measurements cover the audio frequency band from 10Hz to 10kHz, which is of particular relevance to ground-based interferometric gravitational wave detectors, and span up to an order of magnitude above and below the fund...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2015-06
Hauptverfasser: Nguyen, Thanh T-H, Slagmolen, Bram J J, Mow-Lowry, Conor M, Miller, John, Mullavey, Adam, Goßler, Stefan, Altin, Paul A, Shaddock, Daniel A, McClelland, David E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Nguyen, Thanh T-H
Slagmolen, Bram J J
Mow-Lowry, Conor M
Miller, John
Mullavey, Adam
Goßler, Stefan
Altin, Paul A
Shaddock, Daniel A
McClelland, David E
description We present measurements of thermal noise in niobium and aluminium flexures. Our measurements cover the audio frequency band from 10Hz to 10kHz, which is of particular relevance to ground-based interferometric gravitational wave detectors, and span up to an order of magnitude above and below the fundamental flexure resonances at 50Hz - 300Hz. Our results are well-explained by a simple model in which both structural and thermoelastic loss play a role. The ability of such a model to explain this interplay is important for investigations of quantum-radiation-pressure noise and the standard quantum limit.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2082546542</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2082546542</sourcerecordid><originalsourceid>FETCH-proquest_journals_20825465423</originalsourceid><addsrcrecordid>eNqNykEKwjAQQNEgCBbtHQKug3GS1O5F8QDdl1CmtSVNdKYRj68LD-DqL95fiQKMOaraAmxEyTxpraE6gXOmEIfmjjT7IGMaGWXq5UB-Vtz5gLLzcRkDvpBkH_CdCXkn1r0PjOWvW7G_XprzTT0oPTPy0k4pU_xSC7oGZytnwfx3fQA4qjLX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2082546542</pqid></control><display><type>article</type><title>Thermal noise of gram-scale cantilever flexures</title><source>Freely Accessible Journals</source><creator>Nguyen, Thanh T-H ; Slagmolen, Bram J J ; Mow-Lowry, Conor M ; Miller, John ; Mullavey, Adam ; Goßler, Stefan ; Altin, Paul A ; Shaddock, Daniel A ; McClelland, David E</creator><creatorcontrib>Nguyen, Thanh T-H ; Slagmolen, Bram J J ; Mow-Lowry, Conor M ; Miller, John ; Mullavey, Adam ; Goßler, Stefan ; Altin, Paul A ; Shaddock, Daniel A ; McClelland, David E</creatorcontrib><description>We present measurements of thermal noise in niobium and aluminium flexures. Our measurements cover the audio frequency band from 10Hz to 10kHz, which is of particular relevance to ground-based interferometric gravitational wave detectors, and span up to an order of magnitude above and below the fundamental flexure resonances at 50Hz - 300Hz. Our results are well-explained by a simple model in which both structural and thermoelastic loss play a role. The ability of such a model to explain this interplay is important for investigations of quantum-radiation-pressure noise and the standard quantum limit.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Aluminum ; Audio frequencies ; Flexing ; Frequencies ; Gravitational waves ; Niobium ; Noise ; Thermal noise</subject><ispartof>arXiv.org, 2015-06</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Nguyen, Thanh T-H</creatorcontrib><creatorcontrib>Slagmolen, Bram J J</creatorcontrib><creatorcontrib>Mow-Lowry, Conor M</creatorcontrib><creatorcontrib>Miller, John</creatorcontrib><creatorcontrib>Mullavey, Adam</creatorcontrib><creatorcontrib>Goßler, Stefan</creatorcontrib><creatorcontrib>Altin, Paul A</creatorcontrib><creatorcontrib>Shaddock, Daniel A</creatorcontrib><creatorcontrib>McClelland, David E</creatorcontrib><title>Thermal noise of gram-scale cantilever flexures</title><title>arXiv.org</title><description>We present measurements of thermal noise in niobium and aluminium flexures. Our measurements cover the audio frequency band from 10Hz to 10kHz, which is of particular relevance to ground-based interferometric gravitational wave detectors, and span up to an order of magnitude above and below the fundamental flexure resonances at 50Hz - 300Hz. Our results are well-explained by a simple model in which both structural and thermoelastic loss play a role. The ability of such a model to explain this interplay is important for investigations of quantum-radiation-pressure noise and the standard quantum limit.</description><subject>Aluminum</subject><subject>Audio frequencies</subject><subject>Flexing</subject><subject>Frequencies</subject><subject>Gravitational waves</subject><subject>Niobium</subject><subject>Noise</subject><subject>Thermal noise</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNykEKwjAQQNEgCBbtHQKug3GS1O5F8QDdl1CmtSVNdKYRj68LD-DqL95fiQKMOaraAmxEyTxpraE6gXOmEIfmjjT7IGMaGWXq5UB-Vtz5gLLzcRkDvpBkH_CdCXkn1r0PjOWvW7G_XprzTT0oPTPy0k4pU_xSC7oGZytnwfx3fQA4qjLX</recordid><startdate>20150603</startdate><enddate>20150603</enddate><creator>Nguyen, Thanh T-H</creator><creator>Slagmolen, Bram J J</creator><creator>Mow-Lowry, Conor M</creator><creator>Miller, John</creator><creator>Mullavey, Adam</creator><creator>Goßler, Stefan</creator><creator>Altin, Paul A</creator><creator>Shaddock, Daniel A</creator><creator>McClelland, David E</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150603</creationdate><title>Thermal noise of gram-scale cantilever flexures</title><author>Nguyen, Thanh T-H ; Slagmolen, Bram J J ; Mow-Lowry, Conor M ; Miller, John ; Mullavey, Adam ; Goßler, Stefan ; Altin, Paul A ; Shaddock, Daniel A ; McClelland, David E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20825465423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aluminum</topic><topic>Audio frequencies</topic><topic>Flexing</topic><topic>Frequencies</topic><topic>Gravitational waves</topic><topic>Niobium</topic><topic>Noise</topic><topic>Thermal noise</topic><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Thanh T-H</creatorcontrib><creatorcontrib>Slagmolen, Bram J J</creatorcontrib><creatorcontrib>Mow-Lowry, Conor M</creatorcontrib><creatorcontrib>Miller, John</creatorcontrib><creatorcontrib>Mullavey, Adam</creatorcontrib><creatorcontrib>Goßler, Stefan</creatorcontrib><creatorcontrib>Altin, Paul A</creatorcontrib><creatorcontrib>Shaddock, Daniel A</creatorcontrib><creatorcontrib>McClelland, David E</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Thanh T-H</au><au>Slagmolen, Bram J J</au><au>Mow-Lowry, Conor M</au><au>Miller, John</au><au>Mullavey, Adam</au><au>Goßler, Stefan</au><au>Altin, Paul A</au><au>Shaddock, Daniel A</au><au>McClelland, David E</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Thermal noise of gram-scale cantilever flexures</atitle><jtitle>arXiv.org</jtitle><date>2015-06-03</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>We present measurements of thermal noise in niobium and aluminium flexures. Our measurements cover the audio frequency band from 10Hz to 10kHz, which is of particular relevance to ground-based interferometric gravitational wave detectors, and span up to an order of magnitude above and below the fundamental flexure resonances at 50Hz - 300Hz. Our results are well-explained by a simple model in which both structural and thermoelastic loss play a role. The ability of such a model to explain this interplay is important for investigations of quantum-radiation-pressure noise and the standard quantum limit.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2015-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2082546542
source Freely Accessible Journals
subjects Aluminum
Audio frequencies
Flexing
Frequencies
Gravitational waves
Niobium
Noise
Thermal noise
title Thermal noise of gram-scale cantilever flexures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T10%3A10%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Thermal%20noise%20of%20gram-scale%20cantilever%20flexures&rft.jtitle=arXiv.org&rft.au=Nguyen,%20Thanh%20T-H&rft.date=2015-06-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2082546542%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2082546542&rft_id=info:pmid/&rfr_iscdi=true