A method of integration for classical and quantum equations based on the connection between canonical transformations and irreducible representations of Lie groups

We propose a method for integrating the right-invariant geodesic flows on Lie groups based on the use of a special canonical transformation in the cotangent bundle of the group. We also describe an original method of constructing exact solutions for the Klein - Gordon equation on unimodular Lie grou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2015-05
Hauptverfasser: Magazev, Alexey A, Shirokov, Igor V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Magazev, Alexey A
Shirokov, Igor V
description We propose a method for integrating the right-invariant geodesic flows on Lie groups based on the use of a special canonical transformation in the cotangent bundle of the group. We also describe an original method of constructing exact solutions for the Klein - Gordon equation on unimodular Lie groups. Finally, we formulate a theorem which establishes a connection between the special canonical transformation and irreducible representations of Lie group. This connection allows us to consider the proposed methods of integrating for classical and quantum equations in the framework of a unified approach.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2082081954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2082081954</sourcerecordid><originalsourceid>FETCH-proquest_journals_20820819543</originalsourceid><addsrcrecordid>eNqNjsFqw0AMRJdCIaHNPwh6DjjruE2OpbT00GPvYb2Wkw225Eha-kH90W6CP6AwoIGZN-jOLX1db9a7rfcLt1I9V1Xln19809RL9_sKI9qJO-AeEhkeJVhigp4F4hBUUwwDBOrgkgNZHgGLuVYU2qBYQAI7IUQmwnhjW7QfRIIYiOnGmwTSMjnO5HUviWCXY2oHBMFJUJFszsszXwnhKJwnfXT3fRgUV_N9cE8f799vn-tJ-JJR7XDmLFSig692RZt9s63_1_oD8XlfWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2082081954</pqid></control><display><type>article</type><title>A method of integration for classical and quantum equations based on the connection between canonical transformations and irreducible representations of Lie groups</title><source>Free E- Journals</source><creator>Magazev, Alexey A ; Shirokov, Igor V</creator><creatorcontrib>Magazev, Alexey A ; Shirokov, Igor V</creatorcontrib><description>We propose a method for integrating the right-invariant geodesic flows on Lie groups based on the use of a special canonical transformation in the cotangent bundle of the group. We also describe an original method of constructing exact solutions for the Klein - Gordon equation on unimodular Lie groups. Finally, we formulate a theorem which establishes a connection between the special canonical transformation and irreducible representations of Lie group. This connection allows us to consider the proposed methods of integrating for classical and quantum equations in the framework of a unified approach.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Lie groups ; Mathematical analysis ; Representations ; Transformations (mathematics)</subject><ispartof>arXiv.org, 2015-05</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Magazev, Alexey A</creatorcontrib><creatorcontrib>Shirokov, Igor V</creatorcontrib><title>A method of integration for classical and quantum equations based on the connection between canonical transformations and irreducible representations of Lie groups</title><title>arXiv.org</title><description>We propose a method for integrating the right-invariant geodesic flows on Lie groups based on the use of a special canonical transformation in the cotangent bundle of the group. We also describe an original method of constructing exact solutions for the Klein - Gordon equation on unimodular Lie groups. Finally, we formulate a theorem which establishes a connection between the special canonical transformation and irreducible representations of Lie group. This connection allows us to consider the proposed methods of integrating for classical and quantum equations in the framework of a unified approach.</description><subject>Lie groups</subject><subject>Mathematical analysis</subject><subject>Representations</subject><subject>Transformations (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjsFqw0AMRJdCIaHNPwh6DjjruE2OpbT00GPvYb2Wkw225Eha-kH90W6CP6AwoIGZN-jOLX1db9a7rfcLt1I9V1Xln19809RL9_sKI9qJO-AeEhkeJVhigp4F4hBUUwwDBOrgkgNZHgGLuVYU2qBYQAI7IUQmwnhjW7QfRIIYiOnGmwTSMjnO5HUviWCXY2oHBMFJUJFszsszXwnhKJwnfXT3fRgUV_N9cE8f799vn-tJ-JJR7XDmLFSig692RZt9s63_1_oD8XlfWQ</recordid><startdate>20150526</startdate><enddate>20150526</enddate><creator>Magazev, Alexey A</creator><creator>Shirokov, Igor V</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150526</creationdate><title>A method of integration for classical and quantum equations based on the connection between canonical transformations and irreducible representations of Lie groups</title><author>Magazev, Alexey A ; Shirokov, Igor V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20820819543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Lie groups</topic><topic>Mathematical analysis</topic><topic>Representations</topic><topic>Transformations (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Magazev, Alexey A</creatorcontrib><creatorcontrib>Shirokov, Igor V</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Magazev, Alexey A</au><au>Shirokov, Igor V</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A method of integration for classical and quantum equations based on the connection between canonical transformations and irreducible representations of Lie groups</atitle><jtitle>arXiv.org</jtitle><date>2015-05-26</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>We propose a method for integrating the right-invariant geodesic flows on Lie groups based on the use of a special canonical transformation in the cotangent bundle of the group. We also describe an original method of constructing exact solutions for the Klein - Gordon equation on unimodular Lie groups. Finally, we formulate a theorem which establishes a connection between the special canonical transformation and irreducible representations of Lie group. This connection allows us to consider the proposed methods of integrating for classical and quantum equations in the framework of a unified approach.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2015-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2082081954
source Free E- Journals
subjects Lie groups
Mathematical analysis
Representations
Transformations (mathematics)
title A method of integration for classical and quantum equations based on the connection between canonical transformations and irreducible representations of Lie groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T07%3A01%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20method%20of%20integration%20for%20classical%20and%20quantum%20equations%20based%20on%20the%20connection%20between%20canonical%20transformations%20and%20irreducible%20representations%20of%20Lie%20groups&rft.jtitle=arXiv.org&rft.au=Magazev,%20Alexey%20A&rft.date=2015-05-26&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2082081954%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2082081954&rft_id=info:pmid/&rfr_iscdi=true