A method of integration for classical and quantum equations based on the connection between canonical transformations and irreducible representations of Lie groups

We propose a method for integrating the right-invariant geodesic flows on Lie groups based on the use of a special canonical transformation in the cotangent bundle of the group. We also describe an original method of constructing exact solutions for the Klein - Gordon equation on unimodular Lie grou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2015-05
Hauptverfasser: Magazev, Alexey A, Shirokov, Igor V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a method for integrating the right-invariant geodesic flows on Lie groups based on the use of a special canonical transformation in the cotangent bundle of the group. We also describe an original method of constructing exact solutions for the Klein - Gordon equation on unimodular Lie groups. Finally, we formulate a theorem which establishes a connection between the special canonical transformation and irreducible representations of Lie group. This connection allows us to consider the proposed methods of integrating for classical and quantum equations in the framework of a unified approach.
ISSN:2331-8422