Asymptotic Behaviour of Resonance Eigenvalues of the Schrödinger operator with a Matrix Potential

We will discuss the asymptotic behaviour of the eigenvalues of Schr\"{o}dinger operator with a matrix potential defined by Neumann boundary condition in \(L_2^m(F)\), where \(F\) is \(d\)-dimensional rectangle and the potential is a \(m \times m\) matrix with \(m\geq 2\), \(d\geq 2\) , when the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2015-05
Hauptverfasser: Karakılıç, Sedef, Akduman, Setenay, Coşkan, Didem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Karakılıç, Sedef
Akduman, Setenay
Coşkan, Didem
description We will discuss the asymptotic behaviour of the eigenvalues of Schr\"{o}dinger operator with a matrix potential defined by Neumann boundary condition in \(L_2^m(F)\), where \(F\) is \(d\)-dimensional rectangle and the potential is a \(m \times m\) matrix with \(m\geq 2\), \(d\geq 2\) , when the eigenvalues belong to the resonance domain, roughly speaking they lie near planes of diffraction. \textbf{Keywords:} Schr\"{o}dinger operator, Neumann condition, Resonance eigenvalue, Perturbation theory. \textbf{AMS Subject Classifications:} 47F05, 35P15
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2082076333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2082076333</sourcerecordid><originalsourceid>FETCH-proquest_journals_20820763333</originalsourceid><addsrcrecordid>eNqNjU0KwjAUhIMgKOodHrgWYqKtWxXFjSDqvsT62kRqUpPn38W8gBczggdwNrP4PmYarC2kHA4mIyFarBfCiXMuklSMx7LNDtPwPNfkyOQwQ61uxl09uAK2GJxVNkdYmBLtTVVXDF9AGmGXa_9-HY0tMco1ekXOw92QBgVrRd48YOMILRlVdVmzUFXA3q87rL9c7OerQe3dJY5SdoqfNqJM8IngaSJj_rM-H_FGrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2082076333</pqid></control><display><type>article</type><title>Asymptotic Behaviour of Resonance Eigenvalues of the Schrödinger operator with a Matrix Potential</title><source>Free E- Journals</source><creator>Karakılıç, Sedef ; Akduman, Setenay ; Coşkan, Didem</creator><creatorcontrib>Karakılıç, Sedef ; Akduman, Setenay ; Coşkan, Didem</creatorcontrib><description>We will discuss the asymptotic behaviour of the eigenvalues of Schr\"{o}dinger operator with a matrix potential defined by Neumann boundary condition in \(L_2^m(F)\), where \(F\) is \(d\)-dimensional rectangle and the potential is a \(m \times m\) matrix with \(m\geq 2\), \(d\geq 2\) , when the eigenvalues belong to the resonance domain, roughly speaking they lie near planes of diffraction. \textbf{Keywords:} Schr\"{o}dinger operator, Neumann condition, Resonance eigenvalue, Perturbation theory. \textbf{AMS Subject Classifications:} 47F05, 35P15</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymptotic properties ; Boundary conditions ; Eigenvalues ; Operators (mathematics) ; Perturbation theory</subject><ispartof>arXiv.org, 2015-05</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Karakılıç, Sedef</creatorcontrib><creatorcontrib>Akduman, Setenay</creatorcontrib><creatorcontrib>Coşkan, Didem</creatorcontrib><title>Asymptotic Behaviour of Resonance Eigenvalues of the Schrödinger operator with a Matrix Potential</title><title>arXiv.org</title><description>We will discuss the asymptotic behaviour of the eigenvalues of Schr\"{o}dinger operator with a matrix potential defined by Neumann boundary condition in \(L_2^m(F)\), where \(F\) is \(d\)-dimensional rectangle and the potential is a \(m \times m\) matrix with \(m\geq 2\), \(d\geq 2\) , when the eigenvalues belong to the resonance domain, roughly speaking they lie near planes of diffraction. \textbf{Keywords:} Schr\"{o}dinger operator, Neumann condition, Resonance eigenvalue, Perturbation theory. \textbf{AMS Subject Classifications:} 47F05, 35P15</description><subject>Asymptotic properties</subject><subject>Boundary conditions</subject><subject>Eigenvalues</subject><subject>Operators (mathematics)</subject><subject>Perturbation theory</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjU0KwjAUhIMgKOodHrgWYqKtWxXFjSDqvsT62kRqUpPn38W8gBczggdwNrP4PmYarC2kHA4mIyFarBfCiXMuklSMx7LNDtPwPNfkyOQwQ61uxl09uAK2GJxVNkdYmBLtTVVXDF9AGmGXa_9-HY0tMco1ekXOw92QBgVrRd48YOMILRlVdVmzUFXA3q87rL9c7OerQe3dJY5SdoqfNqJM8IngaSJj_rM-H_FGrg</recordid><startdate>20150519</startdate><enddate>20150519</enddate><creator>Karakılıç, Sedef</creator><creator>Akduman, Setenay</creator><creator>Coşkan, Didem</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150519</creationdate><title>Asymptotic Behaviour of Resonance Eigenvalues of the Schrödinger operator with a Matrix Potential</title><author>Karakılıç, Sedef ; Akduman, Setenay ; Coşkan, Didem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20820763333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Asymptotic properties</topic><topic>Boundary conditions</topic><topic>Eigenvalues</topic><topic>Operators (mathematics)</topic><topic>Perturbation theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Karakılıç, Sedef</creatorcontrib><creatorcontrib>Akduman, Setenay</creatorcontrib><creatorcontrib>Coşkan, Didem</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karakılıç, Sedef</au><au>Akduman, Setenay</au><au>Coşkan, Didem</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Asymptotic Behaviour of Resonance Eigenvalues of the Schrödinger operator with a Matrix Potential</atitle><jtitle>arXiv.org</jtitle><date>2015-05-19</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>We will discuss the asymptotic behaviour of the eigenvalues of Schr\"{o}dinger operator with a matrix potential defined by Neumann boundary condition in \(L_2^m(F)\), where \(F\) is \(d\)-dimensional rectangle and the potential is a \(m \times m\) matrix with \(m\geq 2\), \(d\geq 2\) , when the eigenvalues belong to the resonance domain, roughly speaking they lie near planes of diffraction. \textbf{Keywords:} Schr\"{o}dinger operator, Neumann condition, Resonance eigenvalue, Perturbation theory. \textbf{AMS Subject Classifications:} 47F05, 35P15</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2015-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2082076333
source Free E- Journals
subjects Asymptotic properties
Boundary conditions
Eigenvalues
Operators (mathematics)
Perturbation theory
title Asymptotic Behaviour of Resonance Eigenvalues of the Schrödinger operator with a Matrix Potential
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T16%3A04%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Asymptotic%20Behaviour%20of%20Resonance%20Eigenvalues%20of%20the%20Schr%C3%B6dinger%20operator%20with%20a%20Matrix%20Potential&rft.jtitle=arXiv.org&rft.au=Karak%C4%B1l%C4%B1%C3%A7,%20Sedef&rft.date=2015-05-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2082076333%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2082076333&rft_id=info:pmid/&rfr_iscdi=true