Principal components regression and r-k class predictions in linear mixed models

In this article, we propose the principal components regression and r-k class predictors, which combine the techniques of the ridge and principal components regressions in the linear mixed models. We demonstrate that the Henderson's predictors, the ridge predictors and the principal components...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2018-04, Vol.543, p.173-204
Hauptverfasser: Özkale, M. Revan, Kuran, Özge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 204
container_issue
container_start_page 173
container_title Linear algebra and its applications
container_volume 543
creator Özkale, M. Revan
Kuran, Özge
description In this article, we propose the principal components regression and r-k class predictors, which combine the techniques of the ridge and principal components regressions in the linear mixed models. We demonstrate that the Henderson's predictors, the ridge predictors and the principal components regression predictors are special cases of the r-k class predictors. We also research assumption that the variance parameters are not known and get estimators of variance parameters. The necessary and sufficient conditions for the superiorities of the r-k class predictors over each of these three predictors are obtained by the criterion of mean square error matrix. Furthermore, we suggest tests to approve if these conditions are indeed satisfied. Finally, real data analysis and a simulation study are used to illustrate the findings.
doi_str_mv 10.1016/j.laa.2018.01.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2082040181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379518300077</els_id><sourcerecordid>2082040181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-e906f0c93c849543c35a62c19d34999fee4d125c7a261aa6dccc3f5af7c218d03</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG8Bz62TpJ94ksUvWHAPeg5hMpXUNq1JV_TfG1nPnuYw7zPD-zB2KSAXIKrrPh-MySWIJgeRA4gjthJNrTLRlNUxWwHIIlN1W56ysxh7AChqkCu22wXn0c1m4DiN8-TJL5EHegsUo5s8N97ykL1zHEyMfA5kHS5pEbnzfHCeTOCj-yLLx8nSEM_ZSWeGSBd_c81e7-9eNo_Z9vnhaXO7zVBVzZJRC1UH2CpsirYsFKrSVBJFa1XRtm1HVFghS6yNrIQxlUVE1ZWmq1GKxoJas6vD3TlMH3uKi-6nffDppZbQSCiSCpFS4pDCMMUYqNNzcKMJ31qA_hWne53E6V9xGoRO4hJzc2BSG_p0FHRERx5T80C4aDu5f-gfe7x2EQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2082040181</pqid></control><display><type>article</type><title>Principal components regression and r-k class predictions in linear mixed models</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Özkale, M. Revan ; Kuran, Özge</creator><creatorcontrib>Özkale, M. Revan ; Kuran, Özge</creatorcontrib><description>In this article, we propose the principal components regression and r-k class predictors, which combine the techniques of the ridge and principal components regressions in the linear mixed models. We demonstrate that the Henderson's predictors, the ridge predictors and the principal components regression predictors are special cases of the r-k class predictors. We also research assumption that the variance parameters are not known and get estimators of variance parameters. The necessary and sufficient conditions for the superiorities of the r-k class predictors over each of these three predictors are obtained by the criterion of mean square error matrix. Furthermore, we suggest tests to approve if these conditions are indeed satisfied. Finally, real data analysis and a simulation study are used to illustrate the findings.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2018.01.001</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Computer simulation ; Data analysis ; Henderson's predictor ; Linear algebra ; Linear mixed model ; Mathematical models ; Multicollinearity ; Parameter estimation ; Principal components regression predictor ; Regression analysis ; Ridge predictor</subject><ispartof>Linear algebra and its applications, 2018-04, Vol.543, p.173-204</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Apr 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-e906f0c93c849543c35a62c19d34999fee4d125c7a261aa6dccc3f5af7c218d03</citedby><cites>FETCH-LOGICAL-c368t-e906f0c93c849543c35a62c19d34999fee4d125c7a261aa6dccc3f5af7c218d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.laa.2018.01.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Özkale, M. Revan</creatorcontrib><creatorcontrib>Kuran, Özge</creatorcontrib><title>Principal components regression and r-k class predictions in linear mixed models</title><title>Linear algebra and its applications</title><description>In this article, we propose the principal components regression and r-k class predictors, which combine the techniques of the ridge and principal components regressions in the linear mixed models. We demonstrate that the Henderson's predictors, the ridge predictors and the principal components regression predictors are special cases of the r-k class predictors. We also research assumption that the variance parameters are not known and get estimators of variance parameters. The necessary and sufficient conditions for the superiorities of the r-k class predictors over each of these three predictors are obtained by the criterion of mean square error matrix. Furthermore, we suggest tests to approve if these conditions are indeed satisfied. Finally, real data analysis and a simulation study are used to illustrate the findings.</description><subject>Computer simulation</subject><subject>Data analysis</subject><subject>Henderson's predictor</subject><subject>Linear algebra</subject><subject>Linear mixed model</subject><subject>Mathematical models</subject><subject>Multicollinearity</subject><subject>Parameter estimation</subject><subject>Principal components regression predictor</subject><subject>Regression analysis</subject><subject>Ridge predictor</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG8Bz62TpJ94ksUvWHAPeg5hMpXUNq1JV_TfG1nPnuYw7zPD-zB2KSAXIKrrPh-MySWIJgeRA4gjthJNrTLRlNUxWwHIIlN1W56ysxh7AChqkCu22wXn0c1m4DiN8-TJL5EHegsUo5s8N97ykL1zHEyMfA5kHS5pEbnzfHCeTOCj-yLLx8nSEM_ZSWeGSBd_c81e7-9eNo_Z9vnhaXO7zVBVzZJRC1UH2CpsirYsFKrSVBJFa1XRtm1HVFghS6yNrIQxlUVE1ZWmq1GKxoJas6vD3TlMH3uKi-6nffDppZbQSCiSCpFS4pDCMMUYqNNzcKMJ31qA_hWne53E6V9xGoRO4hJzc2BSG_p0FHRERx5T80C4aDu5f-gfe7x2EQ</recordid><startdate>20180415</startdate><enddate>20180415</enddate><creator>Özkale, M. Revan</creator><creator>Kuran, Özge</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180415</creationdate><title>Principal components regression and r-k class predictions in linear mixed models</title><author>Özkale, M. Revan ; Kuran, Özge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-e906f0c93c849543c35a62c19d34999fee4d125c7a261aa6dccc3f5af7c218d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer simulation</topic><topic>Data analysis</topic><topic>Henderson's predictor</topic><topic>Linear algebra</topic><topic>Linear mixed model</topic><topic>Mathematical models</topic><topic>Multicollinearity</topic><topic>Parameter estimation</topic><topic>Principal components regression predictor</topic><topic>Regression analysis</topic><topic>Ridge predictor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Özkale, M. Revan</creatorcontrib><creatorcontrib>Kuran, Özge</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Özkale, M. Revan</au><au>Kuran, Özge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Principal components regression and r-k class predictions in linear mixed models</atitle><jtitle>Linear algebra and its applications</jtitle><date>2018-04-15</date><risdate>2018</risdate><volume>543</volume><spage>173</spage><epage>204</epage><pages>173-204</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>In this article, we propose the principal components regression and r-k class predictors, which combine the techniques of the ridge and principal components regressions in the linear mixed models. We demonstrate that the Henderson's predictors, the ridge predictors and the principal components regression predictors are special cases of the r-k class predictors. We also research assumption that the variance parameters are not known and get estimators of variance parameters. The necessary and sufficient conditions for the superiorities of the r-k class predictors over each of these three predictors are obtained by the criterion of mean square error matrix. Furthermore, we suggest tests to approve if these conditions are indeed satisfied. Finally, real data analysis and a simulation study are used to illustrate the findings.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2018.01.001</doi><tpages>32</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2018-04, Vol.543, p.173-204
issn 0024-3795
1873-1856
language eng
recordid cdi_proquest_journals_2082040181
source ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals
subjects Computer simulation
Data analysis
Henderson's predictor
Linear algebra
Linear mixed model
Mathematical models
Multicollinearity
Parameter estimation
Principal components regression predictor
Regression analysis
Ridge predictor
title Principal components regression and r-k class predictions in linear mixed models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A51%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Principal%20components%20regression%20and%20r-k%20class%20predictions%20in%20linear%20mixed%20models&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=%C3%96zkale,%20M.%20Revan&rft.date=2018-04-15&rft.volume=543&rft.spage=173&rft.epage=204&rft.pages=173-204&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2018.01.001&rft_dat=%3Cproquest_cross%3E2082040181%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2082040181&rft_id=info:pmid/&rft_els_id=S0024379518300077&rfr_iscdi=true