On line graphs with maximum energy
For an undirected simple graph G, the line graph L(G) is the graph whose vertex set is in one-to-one correspondence with the edge set of G where two vertices are adjacent if their corresponding edges in G have a common vertex. The energy E(G) is the sum of the absolute values of the eigenvalues of G...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2018-05, Vol.545, p.15-31 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 31 |
---|---|
container_issue | |
container_start_page | 15 |
container_title | Linear algebra and its applications |
container_volume | 545 |
creator | Lenes, Eber Mallea-Zepeda, Exequiel Robbiano, María Rodríguez Z., Jonnathan |
description | For an undirected simple graph G, the line graph L(G) is the graph whose vertex set is in one-to-one correspondence with the edge set of G where two vertices are adjacent if their corresponding edges in G have a common vertex. The energy E(G) is the sum of the absolute values of the eigenvalues of G. The vertex connectivity κ(G) is referred as the minimum number of vertices whose deletion disconnects G. The positive inertia ν+(G) corresponds to the number of positive eigenvalues of G. Finally, the matching number β(G) is the maximum number of independent edges of G. In this paper, we derive a sharp upper bound for the energy of the line graph of a graph G on n vertices having a vertex connectivity less than or equal to k. In addition, we obtain upper bounds on E(G) in terms of the edge connectivity, the inertia and the matching number of G. Moreover, a new family of hyperenergetic graphs is obtained. |
doi_str_mv | 10.1016/j.laa.2018.01.025 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2082039881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379518300399</els_id><sourcerecordid>2082039881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-d6370386587eccf7ef62c9e7e694ca10464ca445dce3e36836960301cafa15b53</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAewiWCeM7fgRsUIVL6lSN7C2jDNpHTVJsROgf4-rsmZ1N_fcGR1CrikUFKi8a4uttQUDqgugBTBxQmZUK55TLeQpmQGwMueqEufkIsYWAEoFbEZuVn229T1m62B3m5h9-3GTdfbHd1OXYY9hvb8kZ43dRrz6yzl5f3p8W7zky9Xz6-JhmTsu9ZjXkivgWgqt0LlGYSOZq1ChrEpnKZQyRVmK2iHHRHBZSeBAnW0sFR-Cz8ntcXcXhs8J42jaYQp9OmkYaAa80pqmFj22XBhiDNiYXfCdDXtDwRxUmNYkFeagwgA1SUVi7o8Mpve_PAYTncfeYe0DutHUg_-H_gVuNWQr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2082039881</pqid></control><display><type>article</type><title>On line graphs with maximum energy</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Lenes, Eber ; Mallea-Zepeda, Exequiel ; Robbiano, María ; Rodríguez Z., Jonnathan</creator><creatorcontrib>Lenes, Eber ; Mallea-Zepeda, Exequiel ; Robbiano, María ; Rodríguez Z., Jonnathan</creatorcontrib><description>For an undirected simple graph G, the line graph L(G) is the graph whose vertex set is in one-to-one correspondence with the edge set of G where two vertices are adjacent if their corresponding edges in G have a common vertex. The energy E(G) is the sum of the absolute values of the eigenvalues of G. The vertex connectivity κ(G) is referred as the minimum number of vertices whose deletion disconnects G. The positive inertia ν+(G) corresponds to the number of positive eigenvalues of G. Finally, the matching number β(G) is the maximum number of independent edges of G. In this paper, we derive a sharp upper bound for the energy of the line graph of a graph G on n vertices having a vertex connectivity less than or equal to k. In addition, we obtain upper bounds on E(G) in terms of the edge connectivity, the inertia and the matching number of G. Moreover, a new family of hyperenergetic graphs is obtained.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2018.01.025</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Adjacency matrix ; Deletion ; Edge connectivity ; Eigenvalues ; Graph theory ; Graphs ; Hyperenergetic graph ; Inertia ; Line graph ; Line graph energy ; Linear algebra ; Matching ; Mathematical analysis ; Matrix ; Upper bounds ; Vertex connectivity</subject><ispartof>Linear algebra and its applications, 2018-05, Vol.545, p.15-31</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. May 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-d6370386587eccf7ef62c9e7e694ca10464ca445dce3e36836960301cafa15b53</citedby><cites>FETCH-LOGICAL-c368t-d6370386587eccf7ef62c9e7e694ca10464ca445dce3e36836960301cafa15b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.laa.2018.01.025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Lenes, Eber</creatorcontrib><creatorcontrib>Mallea-Zepeda, Exequiel</creatorcontrib><creatorcontrib>Robbiano, María</creatorcontrib><creatorcontrib>Rodríguez Z., Jonnathan</creatorcontrib><title>On line graphs with maximum energy</title><title>Linear algebra and its applications</title><description>For an undirected simple graph G, the line graph L(G) is the graph whose vertex set is in one-to-one correspondence with the edge set of G where two vertices are adjacent if their corresponding edges in G have a common vertex. The energy E(G) is the sum of the absolute values of the eigenvalues of G. The vertex connectivity κ(G) is referred as the minimum number of vertices whose deletion disconnects G. The positive inertia ν+(G) corresponds to the number of positive eigenvalues of G. Finally, the matching number β(G) is the maximum number of independent edges of G. In this paper, we derive a sharp upper bound for the energy of the line graph of a graph G on n vertices having a vertex connectivity less than or equal to k. In addition, we obtain upper bounds on E(G) in terms of the edge connectivity, the inertia and the matching number of G. Moreover, a new family of hyperenergetic graphs is obtained.</description><subject>Adjacency matrix</subject><subject>Deletion</subject><subject>Edge connectivity</subject><subject>Eigenvalues</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Hyperenergetic graph</subject><subject>Inertia</subject><subject>Line graph</subject><subject>Line graph energy</subject><subject>Linear algebra</subject><subject>Matching</subject><subject>Mathematical analysis</subject><subject>Matrix</subject><subject>Upper bounds</subject><subject>Vertex connectivity</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAewiWCeM7fgRsUIVL6lSN7C2jDNpHTVJsROgf4-rsmZ1N_fcGR1CrikUFKi8a4uttQUDqgugBTBxQmZUK55TLeQpmQGwMueqEufkIsYWAEoFbEZuVn229T1m62B3m5h9-3GTdfbHd1OXYY9hvb8kZ43dRrz6yzl5f3p8W7zky9Xz6-JhmTsu9ZjXkivgWgqt0LlGYSOZq1ChrEpnKZQyRVmK2iHHRHBZSeBAnW0sFR-Cz8ntcXcXhs8J42jaYQp9OmkYaAa80pqmFj22XBhiDNiYXfCdDXtDwRxUmNYkFeagwgA1SUVi7o8Mpve_PAYTncfeYe0DutHUg_-H_gVuNWQr</recordid><startdate>20180515</startdate><enddate>20180515</enddate><creator>Lenes, Eber</creator><creator>Mallea-Zepeda, Exequiel</creator><creator>Robbiano, María</creator><creator>Rodríguez Z., Jonnathan</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180515</creationdate><title>On line graphs with maximum energy</title><author>Lenes, Eber ; Mallea-Zepeda, Exequiel ; Robbiano, María ; Rodríguez Z., Jonnathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-d6370386587eccf7ef62c9e7e694ca10464ca445dce3e36836960301cafa15b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adjacency matrix</topic><topic>Deletion</topic><topic>Edge connectivity</topic><topic>Eigenvalues</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Hyperenergetic graph</topic><topic>Inertia</topic><topic>Line graph</topic><topic>Line graph energy</topic><topic>Linear algebra</topic><topic>Matching</topic><topic>Mathematical analysis</topic><topic>Matrix</topic><topic>Upper bounds</topic><topic>Vertex connectivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lenes, Eber</creatorcontrib><creatorcontrib>Mallea-Zepeda, Exequiel</creatorcontrib><creatorcontrib>Robbiano, María</creatorcontrib><creatorcontrib>Rodríguez Z., Jonnathan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lenes, Eber</au><au>Mallea-Zepeda, Exequiel</au><au>Robbiano, María</au><au>Rodríguez Z., Jonnathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On line graphs with maximum energy</atitle><jtitle>Linear algebra and its applications</jtitle><date>2018-05-15</date><risdate>2018</risdate><volume>545</volume><spage>15</spage><epage>31</epage><pages>15-31</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>For an undirected simple graph G, the line graph L(G) is the graph whose vertex set is in one-to-one correspondence with the edge set of G where two vertices are adjacent if their corresponding edges in G have a common vertex. The energy E(G) is the sum of the absolute values of the eigenvalues of G. The vertex connectivity κ(G) is referred as the minimum number of vertices whose deletion disconnects G. The positive inertia ν+(G) corresponds to the number of positive eigenvalues of G. Finally, the matching number β(G) is the maximum number of independent edges of G. In this paper, we derive a sharp upper bound for the energy of the line graph of a graph G on n vertices having a vertex connectivity less than or equal to k. In addition, we obtain upper bounds on E(G) in terms of the edge connectivity, the inertia and the matching number of G. Moreover, a new family of hyperenergetic graphs is obtained.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2018.01.025</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-3795 |
ispartof | Linear algebra and its applications, 2018-05, Vol.545, p.15-31 |
issn | 0024-3795 1873-1856 |
language | eng |
recordid | cdi_proquest_journals_2082039881 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present) |
subjects | Adjacency matrix Deletion Edge connectivity Eigenvalues Graph theory Graphs Hyperenergetic graph Inertia Line graph Line graph energy Linear algebra Matching Mathematical analysis Matrix Upper bounds Vertex connectivity |
title | On line graphs with maximum energy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A07%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20line%20graphs%20with%20maximum%20energy&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Lenes,%20Eber&rft.date=2018-05-15&rft.volume=545&rft.spage=15&rft.epage=31&rft.pages=15-31&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2018.01.025&rft_dat=%3Cproquest_cross%3E2082039881%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2082039881&rft_id=info:pmid/&rft_els_id=S0024379518300399&rfr_iscdi=true |