On line graphs with maximum energy

For an undirected simple graph G, the line graph L(G) is the graph whose vertex set is in one-to-one correspondence with the edge set of G where two vertices are adjacent if their corresponding edges in G have a common vertex. The energy E(G) is the sum of the absolute values of the eigenvalues of G...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2018-05, Vol.545, p.15-31
Hauptverfasser: Lenes, Eber, Mallea-Zepeda, Exequiel, Robbiano, María, Rodríguez Z., Jonnathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 31
container_issue
container_start_page 15
container_title Linear algebra and its applications
container_volume 545
creator Lenes, Eber
Mallea-Zepeda, Exequiel
Robbiano, María
Rodríguez Z., Jonnathan
description For an undirected simple graph G, the line graph L(G) is the graph whose vertex set is in one-to-one correspondence with the edge set of G where two vertices are adjacent if their corresponding edges in G have a common vertex. The energy E(G) is the sum of the absolute values of the eigenvalues of G. The vertex connectivity κ(G) is referred as the minimum number of vertices whose deletion disconnects G. The positive inertia ν+(G) corresponds to the number of positive eigenvalues of G. Finally, the matching number β(G) is the maximum number of independent edges of G. In this paper, we derive a sharp upper bound for the energy of the line graph of a graph G on n vertices having a vertex connectivity less than or equal to k. In addition, we obtain upper bounds on E(G) in terms of the edge connectivity, the inertia and the matching number of G. Moreover, a new family of hyperenergetic graphs is obtained.
doi_str_mv 10.1016/j.laa.2018.01.025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2082039881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379518300399</els_id><sourcerecordid>2082039881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-d6370386587eccf7ef62c9e7e694ca10464ca445dce3e36836960301cafa15b53</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAewiWCeM7fgRsUIVL6lSN7C2jDNpHTVJsROgf4-rsmZ1N_fcGR1CrikUFKi8a4uttQUDqgugBTBxQmZUK55TLeQpmQGwMueqEufkIsYWAEoFbEZuVn229T1m62B3m5h9-3GTdfbHd1OXYY9hvb8kZ43dRrz6yzl5f3p8W7zky9Xz6-JhmTsu9ZjXkivgWgqt0LlGYSOZq1ChrEpnKZQyRVmK2iHHRHBZSeBAnW0sFR-Cz8ntcXcXhs8J42jaYQp9OmkYaAa80pqmFj22XBhiDNiYXfCdDXtDwRxUmNYkFeagwgA1SUVi7o8Mpve_PAYTncfeYe0DutHUg_-H_gVuNWQr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2082039881</pqid></control><display><type>article</type><title>On line graphs with maximum energy</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Lenes, Eber ; Mallea-Zepeda, Exequiel ; Robbiano, María ; Rodríguez Z., Jonnathan</creator><creatorcontrib>Lenes, Eber ; Mallea-Zepeda, Exequiel ; Robbiano, María ; Rodríguez Z., Jonnathan</creatorcontrib><description>For an undirected simple graph G, the line graph L(G) is the graph whose vertex set is in one-to-one correspondence with the edge set of G where two vertices are adjacent if their corresponding edges in G have a common vertex. The energy E(G) is the sum of the absolute values of the eigenvalues of G. The vertex connectivity κ(G) is referred as the minimum number of vertices whose deletion disconnects G. The positive inertia ν+(G) corresponds to the number of positive eigenvalues of G. Finally, the matching number β(G) is the maximum number of independent edges of G. In this paper, we derive a sharp upper bound for the energy of the line graph of a graph G on n vertices having a vertex connectivity less than or equal to k. In addition, we obtain upper bounds on E(G) in terms of the edge connectivity, the inertia and the matching number of G. Moreover, a new family of hyperenergetic graphs is obtained.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2018.01.025</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Adjacency matrix ; Deletion ; Edge connectivity ; Eigenvalues ; Graph theory ; Graphs ; Hyperenergetic graph ; Inertia ; Line graph ; Line graph energy ; Linear algebra ; Matching ; Mathematical analysis ; Matrix ; Upper bounds ; Vertex connectivity</subject><ispartof>Linear algebra and its applications, 2018-05, Vol.545, p.15-31</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. May 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-d6370386587eccf7ef62c9e7e694ca10464ca445dce3e36836960301cafa15b53</citedby><cites>FETCH-LOGICAL-c368t-d6370386587eccf7ef62c9e7e694ca10464ca445dce3e36836960301cafa15b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.laa.2018.01.025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Lenes, Eber</creatorcontrib><creatorcontrib>Mallea-Zepeda, Exequiel</creatorcontrib><creatorcontrib>Robbiano, María</creatorcontrib><creatorcontrib>Rodríguez Z., Jonnathan</creatorcontrib><title>On line graphs with maximum energy</title><title>Linear algebra and its applications</title><description>For an undirected simple graph G, the line graph L(G) is the graph whose vertex set is in one-to-one correspondence with the edge set of G where two vertices are adjacent if their corresponding edges in G have a common vertex. The energy E(G) is the sum of the absolute values of the eigenvalues of G. The vertex connectivity κ(G) is referred as the minimum number of vertices whose deletion disconnects G. The positive inertia ν+(G) corresponds to the number of positive eigenvalues of G. Finally, the matching number β(G) is the maximum number of independent edges of G. In this paper, we derive a sharp upper bound for the energy of the line graph of a graph G on n vertices having a vertex connectivity less than or equal to k. In addition, we obtain upper bounds on E(G) in terms of the edge connectivity, the inertia and the matching number of G. Moreover, a new family of hyperenergetic graphs is obtained.</description><subject>Adjacency matrix</subject><subject>Deletion</subject><subject>Edge connectivity</subject><subject>Eigenvalues</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Hyperenergetic graph</subject><subject>Inertia</subject><subject>Line graph</subject><subject>Line graph energy</subject><subject>Linear algebra</subject><subject>Matching</subject><subject>Mathematical analysis</subject><subject>Matrix</subject><subject>Upper bounds</subject><subject>Vertex connectivity</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAewiWCeM7fgRsUIVL6lSN7C2jDNpHTVJsROgf4-rsmZ1N_fcGR1CrikUFKi8a4uttQUDqgugBTBxQmZUK55TLeQpmQGwMueqEufkIsYWAEoFbEZuVn229T1m62B3m5h9-3GTdfbHd1OXYY9hvb8kZ43dRrz6yzl5f3p8W7zky9Xz6-JhmTsu9ZjXkivgWgqt0LlGYSOZq1ChrEpnKZQyRVmK2iHHRHBZSeBAnW0sFR-Cz8ntcXcXhs8J42jaYQp9OmkYaAa80pqmFj22XBhiDNiYXfCdDXtDwRxUmNYkFeagwgA1SUVi7o8Mpve_PAYTncfeYe0DutHUg_-H_gVuNWQr</recordid><startdate>20180515</startdate><enddate>20180515</enddate><creator>Lenes, Eber</creator><creator>Mallea-Zepeda, Exequiel</creator><creator>Robbiano, María</creator><creator>Rodríguez Z., Jonnathan</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180515</creationdate><title>On line graphs with maximum energy</title><author>Lenes, Eber ; Mallea-Zepeda, Exequiel ; Robbiano, María ; Rodríguez Z., Jonnathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-d6370386587eccf7ef62c9e7e694ca10464ca445dce3e36836960301cafa15b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adjacency matrix</topic><topic>Deletion</topic><topic>Edge connectivity</topic><topic>Eigenvalues</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Hyperenergetic graph</topic><topic>Inertia</topic><topic>Line graph</topic><topic>Line graph energy</topic><topic>Linear algebra</topic><topic>Matching</topic><topic>Mathematical analysis</topic><topic>Matrix</topic><topic>Upper bounds</topic><topic>Vertex connectivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lenes, Eber</creatorcontrib><creatorcontrib>Mallea-Zepeda, Exequiel</creatorcontrib><creatorcontrib>Robbiano, María</creatorcontrib><creatorcontrib>Rodríguez Z., Jonnathan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lenes, Eber</au><au>Mallea-Zepeda, Exequiel</au><au>Robbiano, María</au><au>Rodríguez Z., Jonnathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On line graphs with maximum energy</atitle><jtitle>Linear algebra and its applications</jtitle><date>2018-05-15</date><risdate>2018</risdate><volume>545</volume><spage>15</spage><epage>31</epage><pages>15-31</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>For an undirected simple graph G, the line graph L(G) is the graph whose vertex set is in one-to-one correspondence with the edge set of G where two vertices are adjacent if their corresponding edges in G have a common vertex. The energy E(G) is the sum of the absolute values of the eigenvalues of G. The vertex connectivity κ(G) is referred as the minimum number of vertices whose deletion disconnects G. The positive inertia ν+(G) corresponds to the number of positive eigenvalues of G. Finally, the matching number β(G) is the maximum number of independent edges of G. In this paper, we derive a sharp upper bound for the energy of the line graph of a graph G on n vertices having a vertex connectivity less than or equal to k. In addition, we obtain upper bounds on E(G) in terms of the edge connectivity, the inertia and the matching number of G. Moreover, a new family of hyperenergetic graphs is obtained.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2018.01.025</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2018-05, Vol.545, p.15-31
issn 0024-3795
1873-1856
language eng
recordid cdi_proquest_journals_2082039881
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present)
subjects Adjacency matrix
Deletion
Edge connectivity
Eigenvalues
Graph theory
Graphs
Hyperenergetic graph
Inertia
Line graph
Line graph energy
Linear algebra
Matching
Mathematical analysis
Matrix
Upper bounds
Vertex connectivity
title On line graphs with maximum energy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A07%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20line%20graphs%20with%20maximum%20energy&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Lenes,%20Eber&rft.date=2018-05-15&rft.volume=545&rft.spage=15&rft.epage=31&rft.pages=15-31&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2018.01.025&rft_dat=%3Cproquest_cross%3E2082039881%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2082039881&rft_id=info:pmid/&rft_els_id=S0024379518300399&rfr_iscdi=true