The minus order and range additivity
We study the minus order on the algebra of bounded linear operators on a Hilbert space. By giving a characterization in terms of range additivity, we show that the intrinsic nature of the minus order is algebraic. Applications to generalized inverses of the sum of two operators, to systems of operat...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2017-10, Vol.531, p.234-256 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 256 |
---|---|
container_issue | |
container_start_page | 234 |
container_title | Linear algebra and its applications |
container_volume | 531 |
creator | Djikić, Marko S. Fongi, Guillermina Maestripieri, Alejandra |
description | We study the minus order on the algebra of bounded linear operators on a Hilbert space. By giving a characterization in terms of range additivity, we show that the intrinsic nature of the minus order is algebraic. Applications to generalized inverses of the sum of two operators, to systems of operator equations and to optimization problems are also presented. |
doi_str_mv | 10.1016/j.laa.2017.05.045 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2082038761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379517303452</els_id><sourcerecordid>2082038761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-cb2d03400d3ddf9b811658e38ae4c60e1c643fc879493036d08b6d86baaac6483</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAewiwTZh_IwjVqjiJVViU9aWY0_AUZsUO63Uv8dVWbOaxdxzZ3QIuaVQUaDqoa_W1lYMaF2BrEDIMzKjuuYl1VKdkxkAEyWvG3lJrlLqAUDUwGbkfvWNxSYMu1SM0WMs7OCLaIcvLKz3YQr7MB2uyUVn1wlv_uacfL48rxZv5fLj9X3xtCwdZ3IqXcs8cAHgufdd02pKldTItUXhFCB1SvDO6boRDQeuPOhWea1aa21eaT4nd6febRx_dpgm04-7OOSThoFmwHWtaE7RU8rFMaWIndnGsLHxYCiYowzTmyzDHGUYkCbLyMzjicH8_j5gNMkFHBz6ENFNxo_hH_oXb_RlCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2082038761</pqid></control><display><type>article</type><title>The minus order and range additivity</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Djikić, Marko S. ; Fongi, Guillermina ; Maestripieri, Alejandra</creator><creatorcontrib>Djikić, Marko S. ; Fongi, Guillermina ; Maestripieri, Alejandra</creatorcontrib><description>We study the minus order on the algebra of bounded linear operators on a Hilbert space. By giving a characterization in terms of range additivity, we show that the intrinsic nature of the minus order is algebraic. Applications to generalized inverses of the sum of two operators, to systems of operator equations and to optimization problems are also presented.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2017.05.045</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Addition & subtraction ; Generalized inverses ; Generalized linear models ; Hilbert space ; Least squares problems ; Linear algebra ; Linear operators ; Mathematical problems ; Minus order ; Operators (mathematics) ; Optimization ; Range additivity</subject><ispartof>Linear algebra and its applications, 2017-10, Vol.531, p.234-256</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Oct 15, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-cb2d03400d3ddf9b811658e38ae4c60e1c643fc879493036d08b6d86baaac6483</citedby><cites>FETCH-LOGICAL-c325t-cb2d03400d3ddf9b811658e38ae4c60e1c643fc879493036d08b6d86baaac6483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.laa.2017.05.045$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Djikić, Marko S.</creatorcontrib><creatorcontrib>Fongi, Guillermina</creatorcontrib><creatorcontrib>Maestripieri, Alejandra</creatorcontrib><title>The minus order and range additivity</title><title>Linear algebra and its applications</title><description>We study the minus order on the algebra of bounded linear operators on a Hilbert space. By giving a characterization in terms of range additivity, we show that the intrinsic nature of the minus order is algebraic. Applications to generalized inverses of the sum of two operators, to systems of operator equations and to optimization problems are also presented.</description><subject>Addition & subtraction</subject><subject>Generalized inverses</subject><subject>Generalized linear models</subject><subject>Hilbert space</subject><subject>Least squares problems</subject><subject>Linear algebra</subject><subject>Linear operators</subject><subject>Mathematical problems</subject><subject>Minus order</subject><subject>Operators (mathematics)</subject><subject>Optimization</subject><subject>Range additivity</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAewiwTZh_IwjVqjiJVViU9aWY0_AUZsUO63Uv8dVWbOaxdxzZ3QIuaVQUaDqoa_W1lYMaF2BrEDIMzKjuuYl1VKdkxkAEyWvG3lJrlLqAUDUwGbkfvWNxSYMu1SM0WMs7OCLaIcvLKz3YQr7MB2uyUVn1wlv_uacfL48rxZv5fLj9X3xtCwdZ3IqXcs8cAHgufdd02pKldTItUXhFCB1SvDO6boRDQeuPOhWea1aa21eaT4nd6febRx_dpgm04-7OOSThoFmwHWtaE7RU8rFMaWIndnGsLHxYCiYowzTmyzDHGUYkCbLyMzjicH8_j5gNMkFHBz6ENFNxo_hH_oXb_RlCA</recordid><startdate>20171015</startdate><enddate>20171015</enddate><creator>Djikić, Marko S.</creator><creator>Fongi, Guillermina</creator><creator>Maestripieri, Alejandra</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20171015</creationdate><title>The minus order and range additivity</title><author>Djikić, Marko S. ; Fongi, Guillermina ; Maestripieri, Alejandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-cb2d03400d3ddf9b811658e38ae4c60e1c643fc879493036d08b6d86baaac6483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Addition & subtraction</topic><topic>Generalized inverses</topic><topic>Generalized linear models</topic><topic>Hilbert space</topic><topic>Least squares problems</topic><topic>Linear algebra</topic><topic>Linear operators</topic><topic>Mathematical problems</topic><topic>Minus order</topic><topic>Operators (mathematics)</topic><topic>Optimization</topic><topic>Range additivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Djikić, Marko S.</creatorcontrib><creatorcontrib>Fongi, Guillermina</creatorcontrib><creatorcontrib>Maestripieri, Alejandra</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Djikić, Marko S.</au><au>Fongi, Guillermina</au><au>Maestripieri, Alejandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The minus order and range additivity</atitle><jtitle>Linear algebra and its applications</jtitle><date>2017-10-15</date><risdate>2017</risdate><volume>531</volume><spage>234</spage><epage>256</epage><pages>234-256</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>We study the minus order on the algebra of bounded linear operators on a Hilbert space. By giving a characterization in terms of range additivity, we show that the intrinsic nature of the minus order is algebraic. Applications to generalized inverses of the sum of two operators, to systems of operator equations and to optimization problems are also presented.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2017.05.045</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-3795 |
ispartof | Linear algebra and its applications, 2017-10, Vol.531, p.234-256 |
issn | 0024-3795 1873-1856 |
language | eng |
recordid | cdi_proquest_journals_2082038761 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Addition & subtraction Generalized inverses Generalized linear models Hilbert space Least squares problems Linear algebra Linear operators Mathematical problems Minus order Operators (mathematics) Optimization Range additivity |
title | The minus order and range additivity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T16%3A03%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20minus%20order%20and%20range%20additivity&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Djiki%C4%87,%20Marko%20S.&rft.date=2017-10-15&rft.volume=531&rft.spage=234&rft.epage=256&rft.pages=234-256&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2017.05.045&rft_dat=%3Cproquest_cross%3E2082038761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2082038761&rft_id=info:pmid/&rft_els_id=S0024379517303452&rfr_iscdi=true |