Bordering for spectrally arbitrary sign patterns

We develop a matrix bordering technique that can be applied to an irreducible spectrally arbitrary sign pattern to construct a higher order spectrally arbitrary sign pattern. This technique generalizes a recently developed triangle extension method. We describe recursive constructions of spectrally...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2017-12, Vol.534, p.36-50
Hauptverfasser: Olesky, D.D., van den Driessche, P., Vander Meulen, K.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 50
container_issue
container_start_page 36
container_title Linear algebra and its applications
container_volume 534
creator Olesky, D.D.
van den Driessche, P.
Vander Meulen, K.N.
description We develop a matrix bordering technique that can be applied to an irreducible spectrally arbitrary sign pattern to construct a higher order spectrally arbitrary sign pattern. This technique generalizes a recently developed triangle extension method. We describe recursive constructions of spectrally arbitrary patterns using our bordering technique, and show that a slight variation of this technique can be used to construct inertially arbitrary sign patterns.
doi_str_mv 10.1016/j.laa.2017.08.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2082038736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002437951730472X</els_id><sourcerecordid>2082038736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-467d621253b52ea64aa422d14bfa19dfd8aa7decb56f7d8b757025f5fa4c42293</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwA7hF4pywduJHxQkqCkiVuMDZcvyoHIUkrFOk_ntclTOn3cPM7sxHyC2FigIV913VG1MxoLICVQGIM7KgStYlVVyckwUAa8parvgluUqpA4BGAlsQeBrReYzDrggjFmnydkbT94fCYBvziocixd1QTGaePQ7pmlwE0yd_8zeX5HPz_LF-LbfvL2_rx21pa6HmshHSCUYZr1vOvBGNMQ1jjjZtMHTlglPGSOdty0WQTrWS5zg88GAam4WreknuTncnHL_3Ps26G_c45JeagWJQ53Iiq-hJZXFMCX3QE8avHFpT0EcwutMZjD6C0aB0BpM9DyePz_F_okedbPSD9S5ibq_dGP9x_wJbHGqt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2082038736</pqid></control><display><type>article</type><title>Bordering for spectrally arbitrary sign patterns</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Olesky, D.D. ; van den Driessche, P. ; Vander Meulen, K.N.</creator><creatorcontrib>Olesky, D.D. ; van den Driessche, P. ; Vander Meulen, K.N.</creatorcontrib><description>We develop a matrix bordering technique that can be applied to an irreducible spectrally arbitrary sign pattern to construct a higher order spectrally arbitrary sign pattern. This technique generalizes a recently developed triangle extension method. We describe recursive constructions of spectrally arbitrary patterns using our bordering technique, and show that a slight variation of this technique can be used to construct inertially arbitrary sign patterns.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2017.08.006</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Inertially arbitrary pattern ; Linear algebra ; Matrix ; Nilpotent matrix ; Nilpotent-Jacobian method ; Polynomials ; Recursive methods ; Spectra ; Spectrally arbitrary pattern</subject><ispartof>Linear algebra and its applications, 2017-12, Vol.534, p.36-50</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Dec 1, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-467d621253b52ea64aa422d14bfa19dfd8aa7decb56f7d8b757025f5fa4c42293</citedby><cites>FETCH-LOGICAL-c368t-467d621253b52ea64aa422d14bfa19dfd8aa7decb56f7d8b757025f5fa4c42293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.laa.2017.08.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Olesky, D.D.</creatorcontrib><creatorcontrib>van den Driessche, P.</creatorcontrib><creatorcontrib>Vander Meulen, K.N.</creatorcontrib><title>Bordering for spectrally arbitrary sign patterns</title><title>Linear algebra and its applications</title><description>We develop a matrix bordering technique that can be applied to an irreducible spectrally arbitrary sign pattern to construct a higher order spectrally arbitrary sign pattern. This technique generalizes a recently developed triangle extension method. We describe recursive constructions of spectrally arbitrary patterns using our bordering technique, and show that a slight variation of this technique can be used to construct inertially arbitrary sign patterns.</description><subject>Inertially arbitrary pattern</subject><subject>Linear algebra</subject><subject>Matrix</subject><subject>Nilpotent matrix</subject><subject>Nilpotent-Jacobian method</subject><subject>Polynomials</subject><subject>Recursive methods</subject><subject>Spectra</subject><subject>Spectrally arbitrary pattern</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEqXwA7hF4pywduJHxQkqCkiVuMDZcvyoHIUkrFOk_ntclTOn3cPM7sxHyC2FigIV913VG1MxoLICVQGIM7KgStYlVVyckwUAa8parvgluUqpA4BGAlsQeBrReYzDrggjFmnydkbT94fCYBvziocixd1QTGaePQ7pmlwE0yd_8zeX5HPz_LF-LbfvL2_rx21pa6HmshHSCUYZr1vOvBGNMQ1jjjZtMHTlglPGSOdty0WQTrWS5zg88GAam4WreknuTncnHL_3Ps26G_c45JeagWJQ53Iiq-hJZXFMCX3QE8avHFpT0EcwutMZjD6C0aB0BpM9DyePz_F_okedbPSD9S5ibq_dGP9x_wJbHGqt</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Olesky, D.D.</creator><creator>van den Driessche, P.</creator><creator>Vander Meulen, K.N.</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20171201</creationdate><title>Bordering for spectrally arbitrary sign patterns</title><author>Olesky, D.D. ; van den Driessche, P. ; Vander Meulen, K.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-467d621253b52ea64aa422d14bfa19dfd8aa7decb56f7d8b757025f5fa4c42293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Inertially arbitrary pattern</topic><topic>Linear algebra</topic><topic>Matrix</topic><topic>Nilpotent matrix</topic><topic>Nilpotent-Jacobian method</topic><topic>Polynomials</topic><topic>Recursive methods</topic><topic>Spectra</topic><topic>Spectrally arbitrary pattern</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olesky, D.D.</creatorcontrib><creatorcontrib>van den Driessche, P.</creatorcontrib><creatorcontrib>Vander Meulen, K.N.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olesky, D.D.</au><au>van den Driessche, P.</au><au>Vander Meulen, K.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bordering for spectrally arbitrary sign patterns</atitle><jtitle>Linear algebra and its applications</jtitle><date>2017-12-01</date><risdate>2017</risdate><volume>534</volume><spage>36</spage><epage>50</epage><pages>36-50</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>We develop a matrix bordering technique that can be applied to an irreducible spectrally arbitrary sign pattern to construct a higher order spectrally arbitrary sign pattern. This technique generalizes a recently developed triangle extension method. We describe recursive constructions of spectrally arbitrary patterns using our bordering technique, and show that a slight variation of this technique can be used to construct inertially arbitrary sign patterns.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2017.08.006</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2017-12, Vol.534, p.36-50
issn 0024-3795
1873-1856
language eng
recordid cdi_proquest_journals_2082038736
source ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals
subjects Inertially arbitrary pattern
Linear algebra
Matrix
Nilpotent matrix
Nilpotent-Jacobian method
Polynomials
Recursive methods
Spectra
Spectrally arbitrary pattern
title Bordering for spectrally arbitrary sign patterns
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A12%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bordering%20for%20spectrally%20arbitrary%20sign%20patterns&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Olesky,%20D.D.&rft.date=2017-12-01&rft.volume=534&rft.spage=36&rft.epage=50&rft.pages=36-50&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2017.08.006&rft_dat=%3Cproquest_cross%3E2082038736%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2082038736&rft_id=info:pmid/&rft_els_id=S002437951730472X&rfr_iscdi=true