A new kurtosis matrix, with statistical applications
The number of fourth-order moments which can be obtained from a random vector rapidly increases with the vector's dimension. Scalar measures of multivariate kurtosis may not satisfactorily capture the fourth-order structure, and matrix measures of multivariate kurtosis are called for. In this p...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2017-01, Vol.512, p.1-17 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Linear algebra and its applications |
container_volume | 512 |
creator | Loperfido, Nicola |
description | The number of fourth-order moments which can be obtained from a random vector rapidly increases with the vector's dimension. Scalar measures of multivariate kurtosis may not satisfactorily capture the fourth-order structure, and matrix measures of multivariate kurtosis are called for. In this paper, we propose a kurtosis matrix derived from the dominant eigenpair of the fourth standardized moment. We show that it is the best symmetric, positive semidefinite Kronecker square root approximation to the fourth standardized moment. Additional properties are derived for realizations from GARCH and reversible random processes. Statistical applications include independent component analysis and projection pursuit. The star product of matrices highlights the connection between the proposed kurtosis matrix and other kurtosis matrices which appeared in the statistical literature. A simulation study assesses the practical relevance of theoretical results in the paper. |
doi_str_mv | 10.1016/j.laa.2016.09.033 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2082038399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379516304323</els_id><sourcerecordid>2082038399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-7c9553ade5810c48c051e36dbbaeb4fd0a34a3825ebc0a3ff17435091e1709633</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAewisSVhnLETW6yqipdUiQ2sLcdxhEOaBNvl8fe4KmtWcxf3zIwOIZcUCgq0uumLQeuiTLEAWQDiEVlQUWNOBa-OyQKgZDnWkp-SsxB6AGA1lAvCVtlov7L3nY9TcCHb6ujd93X25eJbFqKOLkRn9JDpeR5SiG4awzk56fQQ7MXfXJLX-7uX9WO-eX54Wq82ucFKxLw2knPUreWCgmHCAKcWq7ZptG1Y14JGplGU3DYm5a6jNUMOklpag6wQl-TqsHf208fOhqj6aefHdFKVIEpAgVKmFj20jJ9C8LZTs3db7X8UBbWXo3qV5Ki9HAVSJTmJuT0wNr3_6axXwTg7Gts6b01U7eT-oX8B1sprhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2082038399</pqid></control><display><type>article</type><title>A new kurtosis matrix, with statistical applications</title><source>Elsevier ScienceDirect Journals Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Loperfido, Nicola</creator><creatorcontrib>Loperfido, Nicola</creatorcontrib><description>The number of fourth-order moments which can be obtained from a random vector rapidly increases with the vector's dimension. Scalar measures of multivariate kurtosis may not satisfactorily capture the fourth-order structure, and matrix measures of multivariate kurtosis are called for. In this paper, we propose a kurtosis matrix derived from the dominant eigenpair of the fourth standardized moment. We show that it is the best symmetric, positive semidefinite Kronecker square root approximation to the fourth standardized moment. Additional properties are derived for realizations from GARCH and reversible random processes. Statistical applications include independent component analysis and projection pursuit. The star product of matrices highlights the connection between the proposed kurtosis matrix and other kurtosis matrices which appeared in the statistical literature. A simulation study assesses the practical relevance of theoretical results in the paper.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2016.09.033</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Autoregressive processes ; GARCH process ; Independent component analysis ; Kurtosis ; Linear algebra ; Matrices (mathematics) ; Probability distribution ; Projection pursuit ; Random processes ; Random variables ; Reversible process ; Stochastic models ; Weighted distribution</subject><ispartof>Linear algebra and its applications, 2017-01, Vol.512, p.1-17</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Jan 1, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-7c9553ade5810c48c051e36dbbaeb4fd0a34a3825ebc0a3ff17435091e1709633</citedby><cites>FETCH-LOGICAL-c368t-7c9553ade5810c48c051e36dbbaeb4fd0a34a3825ebc0a3ff17435091e1709633</cites><orcidid>0000-0003-4213-1343</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0024379516304323$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Loperfido, Nicola</creatorcontrib><title>A new kurtosis matrix, with statistical applications</title><title>Linear algebra and its applications</title><description>The number of fourth-order moments which can be obtained from a random vector rapidly increases with the vector's dimension. Scalar measures of multivariate kurtosis may not satisfactorily capture the fourth-order structure, and matrix measures of multivariate kurtosis are called for. In this paper, we propose a kurtosis matrix derived from the dominant eigenpair of the fourth standardized moment. We show that it is the best symmetric, positive semidefinite Kronecker square root approximation to the fourth standardized moment. Additional properties are derived for realizations from GARCH and reversible random processes. Statistical applications include independent component analysis and projection pursuit. The star product of matrices highlights the connection between the proposed kurtosis matrix and other kurtosis matrices which appeared in the statistical literature. A simulation study assesses the practical relevance of theoretical results in the paper.</description><subject>Autoregressive processes</subject><subject>GARCH process</subject><subject>Independent component analysis</subject><subject>Kurtosis</subject><subject>Linear algebra</subject><subject>Matrices (mathematics)</subject><subject>Probability distribution</subject><subject>Projection pursuit</subject><subject>Random processes</subject><subject>Random variables</subject><subject>Reversible process</subject><subject>Stochastic models</subject><subject>Weighted distribution</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAewisSVhnLETW6yqipdUiQ2sLcdxhEOaBNvl8fe4KmtWcxf3zIwOIZcUCgq0uumLQeuiTLEAWQDiEVlQUWNOBa-OyQKgZDnWkp-SsxB6AGA1lAvCVtlov7L3nY9TcCHb6ujd93X25eJbFqKOLkRn9JDpeR5SiG4awzk56fQQ7MXfXJLX-7uX9WO-eX54Wq82ucFKxLw2knPUreWCgmHCAKcWq7ZptG1Y14JGplGU3DYm5a6jNUMOklpag6wQl-TqsHf208fOhqj6aefHdFKVIEpAgVKmFj20jJ9C8LZTs3db7X8UBbWXo3qV5Ki9HAVSJTmJuT0wNr3_6axXwTg7Gts6b01U7eT-oX8B1sprhg</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Loperfido, Nicola</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4213-1343</orcidid></search><sort><creationdate>20170101</creationdate><title>A new kurtosis matrix, with statistical applications</title><author>Loperfido, Nicola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-7c9553ade5810c48c051e36dbbaeb4fd0a34a3825ebc0a3ff17435091e1709633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Autoregressive processes</topic><topic>GARCH process</topic><topic>Independent component analysis</topic><topic>Kurtosis</topic><topic>Linear algebra</topic><topic>Matrices (mathematics)</topic><topic>Probability distribution</topic><topic>Projection pursuit</topic><topic>Random processes</topic><topic>Random variables</topic><topic>Reversible process</topic><topic>Stochastic models</topic><topic>Weighted distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loperfido, Nicola</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loperfido, Nicola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new kurtosis matrix, with statistical applications</atitle><jtitle>Linear algebra and its applications</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>512</volume><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>The number of fourth-order moments which can be obtained from a random vector rapidly increases with the vector's dimension. Scalar measures of multivariate kurtosis may not satisfactorily capture the fourth-order structure, and matrix measures of multivariate kurtosis are called for. In this paper, we propose a kurtosis matrix derived from the dominant eigenpair of the fourth standardized moment. We show that it is the best symmetric, positive semidefinite Kronecker square root approximation to the fourth standardized moment. Additional properties are derived for realizations from GARCH and reversible random processes. Statistical applications include independent component analysis and projection pursuit. The star product of matrices highlights the connection between the proposed kurtosis matrix and other kurtosis matrices which appeared in the statistical literature. A simulation study assesses the practical relevance of theoretical results in the paper.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2016.09.033</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-4213-1343</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-3795 |
ispartof | Linear algebra and its applications, 2017-01, Vol.512, p.1-17 |
issn | 0024-3795 1873-1856 |
language | eng |
recordid | cdi_proquest_journals_2082038399 |
source | Elsevier ScienceDirect Journals Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Autoregressive processes GARCH process Independent component analysis Kurtosis Linear algebra Matrices (mathematics) Probability distribution Projection pursuit Random processes Random variables Reversible process Stochastic models Weighted distribution |
title | A new kurtosis matrix, with statistical applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T18%3A34%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20kurtosis%20matrix,%20with%20statistical%20applications&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Loperfido,%20Nicola&rft.date=2017-01-01&rft.volume=512&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2016.09.033&rft_dat=%3Cproquest_cross%3E2082038399%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2082038399&rft_id=info:pmid/&rft_els_id=S0024379516304323&rfr_iscdi=true |