A new kurtosis matrix, with statistical applications

The number of fourth-order moments which can be obtained from a random vector rapidly increases with the vector's dimension. Scalar measures of multivariate kurtosis may not satisfactorily capture the fourth-order structure, and matrix measures of multivariate kurtosis are called for. In this p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2017-01, Vol.512, p.1-17
1. Verfasser: Loperfido, Nicola
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue
container_start_page 1
container_title Linear algebra and its applications
container_volume 512
creator Loperfido, Nicola
description The number of fourth-order moments which can be obtained from a random vector rapidly increases with the vector's dimension. Scalar measures of multivariate kurtosis may not satisfactorily capture the fourth-order structure, and matrix measures of multivariate kurtosis are called for. In this paper, we propose a kurtosis matrix derived from the dominant eigenpair of the fourth standardized moment. We show that it is the best symmetric, positive semidefinite Kronecker square root approximation to the fourth standardized moment. Additional properties are derived for realizations from GARCH and reversible random processes. Statistical applications include independent component analysis and projection pursuit. The star product of matrices highlights the connection between the proposed kurtosis matrix and other kurtosis matrices which appeared in the statistical literature. A simulation study assesses the practical relevance of theoretical results in the paper.
doi_str_mv 10.1016/j.laa.2016.09.033
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2082038399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379516304323</els_id><sourcerecordid>2082038399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-7c9553ade5810c48c051e36dbbaeb4fd0a34a3825ebc0a3ff17435091e1709633</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAewisSVhnLETW6yqipdUiQ2sLcdxhEOaBNvl8fe4KmtWcxf3zIwOIZcUCgq0uumLQeuiTLEAWQDiEVlQUWNOBa-OyQKgZDnWkp-SsxB6AGA1lAvCVtlov7L3nY9TcCHb6ujd93X25eJbFqKOLkRn9JDpeR5SiG4awzk56fQQ7MXfXJLX-7uX9WO-eX54Wq82ucFKxLw2knPUreWCgmHCAKcWq7ZptG1Y14JGplGU3DYm5a6jNUMOklpag6wQl-TqsHf208fOhqj6aefHdFKVIEpAgVKmFj20jJ9C8LZTs3db7X8UBbWXo3qV5Ki9HAVSJTmJuT0wNr3_6axXwTg7Gts6b01U7eT-oX8B1sprhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2082038399</pqid></control><display><type>article</type><title>A new kurtosis matrix, with statistical applications</title><source>Elsevier ScienceDirect Journals Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Loperfido, Nicola</creator><creatorcontrib>Loperfido, Nicola</creatorcontrib><description>The number of fourth-order moments which can be obtained from a random vector rapidly increases with the vector's dimension. Scalar measures of multivariate kurtosis may not satisfactorily capture the fourth-order structure, and matrix measures of multivariate kurtosis are called for. In this paper, we propose a kurtosis matrix derived from the dominant eigenpair of the fourth standardized moment. We show that it is the best symmetric, positive semidefinite Kronecker square root approximation to the fourth standardized moment. Additional properties are derived for realizations from GARCH and reversible random processes. Statistical applications include independent component analysis and projection pursuit. The star product of matrices highlights the connection between the proposed kurtosis matrix and other kurtosis matrices which appeared in the statistical literature. A simulation study assesses the practical relevance of theoretical results in the paper.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2016.09.033</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Autoregressive processes ; GARCH process ; Independent component analysis ; Kurtosis ; Linear algebra ; Matrices (mathematics) ; Probability distribution ; Projection pursuit ; Random processes ; Random variables ; Reversible process ; Stochastic models ; Weighted distribution</subject><ispartof>Linear algebra and its applications, 2017-01, Vol.512, p.1-17</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Jan 1, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-7c9553ade5810c48c051e36dbbaeb4fd0a34a3825ebc0a3ff17435091e1709633</citedby><cites>FETCH-LOGICAL-c368t-7c9553ade5810c48c051e36dbbaeb4fd0a34a3825ebc0a3ff17435091e1709633</cites><orcidid>0000-0003-4213-1343</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0024379516304323$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Loperfido, Nicola</creatorcontrib><title>A new kurtosis matrix, with statistical applications</title><title>Linear algebra and its applications</title><description>The number of fourth-order moments which can be obtained from a random vector rapidly increases with the vector's dimension. Scalar measures of multivariate kurtosis may not satisfactorily capture the fourth-order structure, and matrix measures of multivariate kurtosis are called for. In this paper, we propose a kurtosis matrix derived from the dominant eigenpair of the fourth standardized moment. We show that it is the best symmetric, positive semidefinite Kronecker square root approximation to the fourth standardized moment. Additional properties are derived for realizations from GARCH and reversible random processes. Statistical applications include independent component analysis and projection pursuit. The star product of matrices highlights the connection between the proposed kurtosis matrix and other kurtosis matrices which appeared in the statistical literature. A simulation study assesses the practical relevance of theoretical results in the paper.</description><subject>Autoregressive processes</subject><subject>GARCH process</subject><subject>Independent component analysis</subject><subject>Kurtosis</subject><subject>Linear algebra</subject><subject>Matrices (mathematics)</subject><subject>Probability distribution</subject><subject>Projection pursuit</subject><subject>Random processes</subject><subject>Random variables</subject><subject>Reversible process</subject><subject>Stochastic models</subject><subject>Weighted distribution</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAewisSVhnLETW6yqipdUiQ2sLcdxhEOaBNvl8fe4KmtWcxf3zIwOIZcUCgq0uumLQeuiTLEAWQDiEVlQUWNOBa-OyQKgZDnWkp-SsxB6AGA1lAvCVtlov7L3nY9TcCHb6ujd93X25eJbFqKOLkRn9JDpeR5SiG4awzk56fQQ7MXfXJLX-7uX9WO-eX54Wq82ucFKxLw2knPUreWCgmHCAKcWq7ZptG1Y14JGplGU3DYm5a6jNUMOklpag6wQl-TqsHf208fOhqj6aefHdFKVIEpAgVKmFj20jJ9C8LZTs3db7X8UBbWXo3qV5Ki9HAVSJTmJuT0wNr3_6axXwTg7Gts6b01U7eT-oX8B1sprhg</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Loperfido, Nicola</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4213-1343</orcidid></search><sort><creationdate>20170101</creationdate><title>A new kurtosis matrix, with statistical applications</title><author>Loperfido, Nicola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-7c9553ade5810c48c051e36dbbaeb4fd0a34a3825ebc0a3ff17435091e1709633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Autoregressive processes</topic><topic>GARCH process</topic><topic>Independent component analysis</topic><topic>Kurtosis</topic><topic>Linear algebra</topic><topic>Matrices (mathematics)</topic><topic>Probability distribution</topic><topic>Projection pursuit</topic><topic>Random processes</topic><topic>Random variables</topic><topic>Reversible process</topic><topic>Stochastic models</topic><topic>Weighted distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loperfido, Nicola</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loperfido, Nicola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new kurtosis matrix, with statistical applications</atitle><jtitle>Linear algebra and its applications</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>512</volume><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>The number of fourth-order moments which can be obtained from a random vector rapidly increases with the vector's dimension. Scalar measures of multivariate kurtosis may not satisfactorily capture the fourth-order structure, and matrix measures of multivariate kurtosis are called for. In this paper, we propose a kurtosis matrix derived from the dominant eigenpair of the fourth standardized moment. We show that it is the best symmetric, positive semidefinite Kronecker square root approximation to the fourth standardized moment. Additional properties are derived for realizations from GARCH and reversible random processes. Statistical applications include independent component analysis and projection pursuit. The star product of matrices highlights the connection between the proposed kurtosis matrix and other kurtosis matrices which appeared in the statistical literature. A simulation study assesses the practical relevance of theoretical results in the paper.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2016.09.033</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-4213-1343</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2017-01, Vol.512, p.1-17
issn 0024-3795
1873-1856
language eng
recordid cdi_proquest_journals_2082038399
source Elsevier ScienceDirect Journals Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Autoregressive processes
GARCH process
Independent component analysis
Kurtosis
Linear algebra
Matrices (mathematics)
Probability distribution
Projection pursuit
Random processes
Random variables
Reversible process
Stochastic models
Weighted distribution
title A new kurtosis matrix, with statistical applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T18%3A34%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20kurtosis%20matrix,%20with%20statistical%20applications&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Loperfido,%20Nicola&rft.date=2017-01-01&rft.volume=512&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2016.09.033&rft_dat=%3Cproquest_cross%3E2082038399%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2082038399&rft_id=info:pmid/&rft_els_id=S0024379516304323&rfr_iscdi=true